Evaluate
-\frac{6}{5}-\frac{7}{5}i=-1.2-1.4i
Real Part
-\frac{6}{5} = -1\frac{1}{5} = -1.2
Share
Copied to clipboard
\frac{-2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+\frac{-i}{2+i}
Multiply both numerator and denominator of \frac{-2i}{1+i} by the complex conjugate of the denominator, 1-i.
\frac{-2-2i}{2}+\frac{-i}{2+i}
Do the multiplications in \frac{-2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
-1-i+\frac{-i}{2+i}
Divide -2-2i by 2 to get -1-i.
-1-i+\frac{-i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator of \frac{-i}{2+i} by the complex conjugate of the denominator, 2-i.
-1-i+\frac{-1-2i}{5}
Do the multiplications in \frac{-i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
-1-i+\left(-\frac{1}{5}-\frac{2}{5}i\right)
Divide -1-2i by 5 to get -\frac{1}{5}-\frac{2}{5}i.
-\frac{6}{5}-\frac{7}{5}i
Add -1-i and -\frac{1}{5}-\frac{2}{5}i to get -\frac{6}{5}-\frac{7}{5}i.
Re(\frac{-2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+\frac{-i}{2+i})
Multiply both numerator and denominator of \frac{-2i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{-2-2i}{2}+\frac{-i}{2+i})
Do the multiplications in \frac{-2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(-1-i+\frac{-i}{2+i})
Divide -2-2i by 2 to get -1-i.
Re(-1-i+\frac{-i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Multiply both numerator and denominator of \frac{-i}{2+i} by the complex conjugate of the denominator, 2-i.
Re(-1-i+\frac{-1-2i}{5})
Do the multiplications in \frac{-i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
Re(-1-i+\left(-\frac{1}{5}-\frac{2}{5}i\right))
Divide -1-2i by 5 to get -\frac{1}{5}-\frac{2}{5}i.
Re(-\frac{6}{5}-\frac{7}{5}i)
Add -1-i and -\frac{1}{5}-\frac{2}{5}i to get -\frac{6}{5}-\frac{7}{5}i.
-\frac{6}{5}
The real part of -\frac{6}{5}-\frac{7}{5}i is -\frac{6}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}