Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+\frac{-i}{2+i}
Multiply both numerator and denominator of \frac{-2i}{1+i} by the complex conjugate of the denominator, 1-i.
\frac{-2-2i}{2}+\frac{-i}{2+i}
Do the multiplications in \frac{-2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
-1-i+\frac{-i}{2+i}
Divide -2-2i by 2 to get -1-i.
-1-i+\frac{-i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator of \frac{-i}{2+i} by the complex conjugate of the denominator, 2-i.
-1-i+\frac{-1-2i}{5}
Do the multiplications in \frac{-i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
-1-i+\left(-\frac{1}{5}-\frac{2}{5}i\right)
Divide -1-2i by 5 to get -\frac{1}{5}-\frac{2}{5}i.
-\frac{6}{5}-\frac{7}{5}i
Add -1-i and -\frac{1}{5}-\frac{2}{5}i to get -\frac{6}{5}-\frac{7}{5}i.
Re(\frac{-2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+\frac{-i}{2+i})
Multiply both numerator and denominator of \frac{-2i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{-2-2i}{2}+\frac{-i}{2+i})
Do the multiplications in \frac{-2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(-1-i+\frac{-i}{2+i})
Divide -2-2i by 2 to get -1-i.
Re(-1-i+\frac{-i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Multiply both numerator and denominator of \frac{-i}{2+i} by the complex conjugate of the denominator, 2-i.
Re(-1-i+\frac{-1-2i}{5})
Do the multiplications in \frac{-i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
Re(-1-i+\left(-\frac{1}{5}-\frac{2}{5}i\right))
Divide -1-2i by 5 to get -\frac{1}{5}-\frac{2}{5}i.
Re(-\frac{6}{5}-\frac{7}{5}i)
Add -1-i and -\frac{1}{5}-\frac{2}{5}i to get -\frac{6}{5}-\frac{7}{5}i.
-\frac{6}{5}
The real part of -\frac{6}{5}-\frac{7}{5}i is -\frac{6}{5}.