Solve for c
c=2
c=-2\text{, }x\neq 0
Solve for x (complex solution)
x\neq 0
c=2\text{ or }c=-2
Solve for x
x\neq 0
|c|=2
Graph
Share
Copied to clipboard
-2c^{2}+8=0
Multiply both sides of the equation by 8x.
-2c^{2}=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
c^{2}=\frac{-8}{-2}
Divide both sides by -2.
c^{2}=4
Divide -8 by -2 to get 4.
c=2 c=-2
Take the square root of both sides of the equation.
-2c^{2}+8=0
Multiply both sides of the equation by 8x.
c=\frac{0±\sqrt{0^{2}-4\left(-2\right)\times 8}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 0 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\left(-2\right)\times 8}}{2\left(-2\right)}
Square 0.
c=\frac{0±\sqrt{8\times 8}}{2\left(-2\right)}
Multiply -4 times -2.
c=\frac{0±\sqrt{64}}{2\left(-2\right)}
Multiply 8 times 8.
c=\frac{0±8}{2\left(-2\right)}
Take the square root of 64.
c=\frac{0±8}{-4}
Multiply 2 times -2.
c=-2
Now solve the equation c=\frac{0±8}{-4} when ± is plus. Divide 8 by -4.
c=2
Now solve the equation c=\frac{0±8}{-4} when ± is minus. Divide -8 by -4.
c=-2 c=2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}