Evaluate
-\frac{a^{2}}{3}-\frac{29a}{12}+1
Factor
-\frac{1}{3}\left(a-\frac{-\sqrt{1033}-29}{8}\right)\left(a-\frac{\sqrt{1033}-29}{8}\right)
Share
Copied to clipboard
\frac{-2a}{3}+1+\frac{3a^{2}}{3}-\frac{3a}{2}-\frac{4a^{2}}{3}-\frac{a}{4}
Divide 2 by 2 to get 1.
\frac{-2a}{3}+1+a^{2}-\frac{3a}{2}-\frac{4a^{2}}{3}-\frac{a}{4}
Cancel out 3 and 3.
\frac{-2a}{3}+\frac{3\left(1+a^{2}\right)}{3}-\frac{3a}{2}-\frac{4a^{2}}{3}-\frac{a}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+a^{2} times \frac{3}{3}.
\frac{-2a+3\left(1+a^{2}\right)}{3}-\frac{3a}{2}-\frac{4a^{2}}{3}-\frac{a}{4}
Since \frac{-2a}{3} and \frac{3\left(1+a^{2}\right)}{3} have the same denominator, add them by adding their numerators.
\frac{-2a+3+3a^{2}}{3}-\frac{3a}{2}-\frac{4a^{2}}{3}-\frac{a}{4}
Do the multiplications in -2a+3\left(1+a^{2}\right).
\frac{2\left(-2a+3+3a^{2}\right)}{6}-\frac{3\times 3a}{6}-\frac{4a^{2}}{3}-\frac{a}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{-2a+3+3a^{2}}{3} times \frac{2}{2}. Multiply \frac{3a}{2} times \frac{3}{3}.
\frac{2\left(-2a+3+3a^{2}\right)-3\times 3a}{6}-\frac{4a^{2}}{3}-\frac{a}{4}
Since \frac{2\left(-2a+3+3a^{2}\right)}{6} and \frac{3\times 3a}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a+6+6a^{2}-9a}{6}-\frac{4a^{2}}{3}-\frac{a}{4}
Do the multiplications in 2\left(-2a+3+3a^{2}\right)-3\times 3a.
\frac{-13a+6+6a^{2}}{6}-\frac{4a^{2}}{3}-\frac{a}{4}
Combine like terms in -4a+6+6a^{2}-9a.
\frac{-13a+6+6a^{2}}{6}-\frac{2\times 4a^{2}}{6}-\frac{a}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 3 is 6. Multiply \frac{4a^{2}}{3} times \frac{2}{2}.
\frac{-13a+6+6a^{2}-2\times 4a^{2}}{6}-\frac{a}{4}
Since \frac{-13a+6+6a^{2}}{6} and \frac{2\times 4a^{2}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-13a+6+6a^{2}-8a^{2}}{6}-\frac{a}{4}
Do the multiplications in -13a+6+6a^{2}-2\times 4a^{2}.
\frac{-13a+6-2a^{2}}{6}-\frac{a}{4}
Combine like terms in -13a+6+6a^{2}-8a^{2}.
\frac{2\left(-13a+6-2a^{2}\right)}{12}-\frac{3a}{12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 4 is 12. Multiply \frac{-13a+6-2a^{2}}{6} times \frac{2}{2}. Multiply \frac{a}{4} times \frac{3}{3}.
\frac{2\left(-13a+6-2a^{2}\right)-3a}{12}
Since \frac{2\left(-13a+6-2a^{2}\right)}{12} and \frac{3a}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-26a+12-4a^{2}-3a}{12}
Do the multiplications in 2\left(-13a+6-2a^{2}\right)-3a.
\frac{-29a+12-4a^{2}}{12}
Combine like terms in -26a+12-4a^{2}-3a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}