Evaluate
-\frac{23}{53}-\frac{1}{53}i\approx -0.433962264-0.018867925i
Real Part
-\frac{23}{53} = -0.4339622641509434
Share
Copied to clipboard
\frac{\left(-2-4i\right)\left(5-9i\right)}{\left(5+9i\right)\left(5-9i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5-9i.
\frac{\left(-2-4i\right)\left(5-9i\right)}{5^{2}-9^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2-4i\right)\left(5-9i\right)}{106}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-2\times 5-2\times \left(-9i\right)-4i\times 5-4\left(-9\right)i^{2}}{106}
Multiply complex numbers -2-4i and 5-9i like you multiply binomials.
\frac{-2\times 5-2\times \left(-9i\right)-4i\times 5-4\left(-9\right)\left(-1\right)}{106}
By definition, i^{2} is -1.
\frac{-10+18i-20i-36}{106}
Do the multiplications in -2\times 5-2\times \left(-9i\right)-4i\times 5-4\left(-9\right)\left(-1\right).
\frac{-10-36+\left(18-20\right)i}{106}
Combine the real and imaginary parts in -10+18i-20i-36.
\frac{-46-2i}{106}
Do the additions in -10-36+\left(18-20\right)i.
-\frac{23}{53}-\frac{1}{53}i
Divide -46-2i by 106 to get -\frac{23}{53}-\frac{1}{53}i.
Re(\frac{\left(-2-4i\right)\left(5-9i\right)}{\left(5+9i\right)\left(5-9i\right)})
Multiply both numerator and denominator of \frac{-2-4i}{5+9i} by the complex conjugate of the denominator, 5-9i.
Re(\frac{\left(-2-4i\right)\left(5-9i\right)}{5^{2}-9^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2-4i\right)\left(5-9i\right)}{106})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-2\times 5-2\times \left(-9i\right)-4i\times 5-4\left(-9\right)i^{2}}{106})
Multiply complex numbers -2-4i and 5-9i like you multiply binomials.
Re(\frac{-2\times 5-2\times \left(-9i\right)-4i\times 5-4\left(-9\right)\left(-1\right)}{106})
By definition, i^{2} is -1.
Re(\frac{-10+18i-20i-36}{106})
Do the multiplications in -2\times 5-2\times \left(-9i\right)-4i\times 5-4\left(-9\right)\left(-1\right).
Re(\frac{-10-36+\left(18-20\right)i}{106})
Combine the real and imaginary parts in -10+18i-20i-36.
Re(\frac{-46-2i}{106})
Do the additions in -10-36+\left(18-20\right)i.
Re(-\frac{23}{53}-\frac{1}{53}i)
Divide -46-2i by 106 to get -\frac{23}{53}-\frac{1}{53}i.
-\frac{23}{53}
The real part of -\frac{23}{53}-\frac{1}{53}i is -\frac{23}{53}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}