Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-2-4i\right)\left(5-9i\right)}{\left(5+9i\right)\left(5-9i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5-9i.
\frac{\left(-2-4i\right)\left(5-9i\right)}{5^{2}-9^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2-4i\right)\left(5-9i\right)}{106}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-2\times 5-2\times \left(-9i\right)-4i\times 5-4\left(-9\right)i^{2}}{106}
Multiply complex numbers -2-4i and 5-9i like you multiply binomials.
\frac{-2\times 5-2\times \left(-9i\right)-4i\times 5-4\left(-9\right)\left(-1\right)}{106}
By definition, i^{2} is -1.
\frac{-10+18i-20i-36}{106}
Do the multiplications in -2\times 5-2\times \left(-9i\right)-4i\times 5-4\left(-9\right)\left(-1\right).
\frac{-10-36+\left(18-20\right)i}{106}
Combine the real and imaginary parts in -10+18i-20i-36.
\frac{-46-2i}{106}
Do the additions in -10-36+\left(18-20\right)i.
-\frac{23}{53}-\frac{1}{53}i
Divide -46-2i by 106 to get -\frac{23}{53}-\frac{1}{53}i.
Re(\frac{\left(-2-4i\right)\left(5-9i\right)}{\left(5+9i\right)\left(5-9i\right)})
Multiply both numerator and denominator of \frac{-2-4i}{5+9i} by the complex conjugate of the denominator, 5-9i.
Re(\frac{\left(-2-4i\right)\left(5-9i\right)}{5^{2}-9^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2-4i\right)\left(5-9i\right)}{106})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-2\times 5-2\times \left(-9i\right)-4i\times 5-4\left(-9\right)i^{2}}{106})
Multiply complex numbers -2-4i and 5-9i like you multiply binomials.
Re(\frac{-2\times 5-2\times \left(-9i\right)-4i\times 5-4\left(-9\right)\left(-1\right)}{106})
By definition, i^{2} is -1.
Re(\frac{-10+18i-20i-36}{106})
Do the multiplications in -2\times 5-2\times \left(-9i\right)-4i\times 5-4\left(-9\right)\left(-1\right).
Re(\frac{-10-36+\left(18-20\right)i}{106})
Combine the real and imaginary parts in -10+18i-20i-36.
Re(\frac{-46-2i}{106})
Do the additions in -10-36+\left(18-20\right)i.
Re(-\frac{23}{53}-\frac{1}{53}i)
Divide -46-2i by 106 to get -\frac{23}{53}-\frac{1}{53}i.
-\frac{23}{53}
The real part of -\frac{23}{53}-\frac{1}{53}i is -\frac{23}{53}.