Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-2-4i\right)\left(-5-9i\right)}{\left(-5+9i\right)\left(-5-9i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -5-9i.
\frac{\left(-2-4i\right)\left(-5-9i\right)}{\left(-5\right)^{2}-9^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2-4i\right)\left(-5-9i\right)}{106}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)i^{2}}{106}
Multiply complex numbers -2-4i and -5-9i like you multiply binomials.
\frac{-2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)\left(-1\right)}{106}
By definition, i^{2} is -1.
\frac{10+18i+20i-36}{106}
Do the multiplications in -2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)\left(-1\right).
\frac{10-36+\left(18+20\right)i}{106}
Combine the real and imaginary parts in 10+18i+20i-36.
\frac{-26+38i}{106}
Do the additions in 10-36+\left(18+20\right)i.
-\frac{13}{53}+\frac{19}{53}i
Divide -26+38i by 106 to get -\frac{13}{53}+\frac{19}{53}i.
Re(\frac{\left(-2-4i\right)\left(-5-9i\right)}{\left(-5+9i\right)\left(-5-9i\right)})
Multiply both numerator and denominator of \frac{-2-4i}{-5+9i} by the complex conjugate of the denominator, -5-9i.
Re(\frac{\left(-2-4i\right)\left(-5-9i\right)}{\left(-5\right)^{2}-9^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2-4i\right)\left(-5-9i\right)}{106})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)i^{2}}{106})
Multiply complex numbers -2-4i and -5-9i like you multiply binomials.
Re(\frac{-2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)\left(-1\right)}{106})
By definition, i^{2} is -1.
Re(\frac{10+18i+20i-36}{106})
Do the multiplications in -2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)\left(-1\right).
Re(\frac{10-36+\left(18+20\right)i}{106})
Combine the real and imaginary parts in 10+18i+20i-36.
Re(\frac{-26+38i}{106})
Do the additions in 10-36+\left(18+20\right)i.
Re(-\frac{13}{53}+\frac{19}{53}i)
Divide -26+38i by 106 to get -\frac{13}{53}+\frac{19}{53}i.
-\frac{13}{53}
The real part of -\frac{13}{53}+\frac{19}{53}i is -\frac{13}{53}.