Evaluate
-\frac{13}{53}+\frac{19}{53}i\approx -0.245283019+0.358490566i
Real Part
-\frac{13}{53} = -0.24528301886792453
Share
Copied to clipboard
\frac{\left(-2-4i\right)\left(-5-9i\right)}{\left(-5+9i\right)\left(-5-9i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -5-9i.
\frac{\left(-2-4i\right)\left(-5-9i\right)}{\left(-5\right)^{2}-9^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2-4i\right)\left(-5-9i\right)}{106}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)i^{2}}{106}
Multiply complex numbers -2-4i and -5-9i like you multiply binomials.
\frac{-2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)\left(-1\right)}{106}
By definition, i^{2} is -1.
\frac{10+18i+20i-36}{106}
Do the multiplications in -2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)\left(-1\right).
\frac{10-36+\left(18+20\right)i}{106}
Combine the real and imaginary parts in 10+18i+20i-36.
\frac{-26+38i}{106}
Do the additions in 10-36+\left(18+20\right)i.
-\frac{13}{53}+\frac{19}{53}i
Divide -26+38i by 106 to get -\frac{13}{53}+\frac{19}{53}i.
Re(\frac{\left(-2-4i\right)\left(-5-9i\right)}{\left(-5+9i\right)\left(-5-9i\right)})
Multiply both numerator and denominator of \frac{-2-4i}{-5+9i} by the complex conjugate of the denominator, -5-9i.
Re(\frac{\left(-2-4i\right)\left(-5-9i\right)}{\left(-5\right)^{2}-9^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2-4i\right)\left(-5-9i\right)}{106})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)i^{2}}{106})
Multiply complex numbers -2-4i and -5-9i like you multiply binomials.
Re(\frac{-2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)\left(-1\right)}{106})
By definition, i^{2} is -1.
Re(\frac{10+18i+20i-36}{106})
Do the multiplications in -2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)\left(-1\right).
Re(\frac{10-36+\left(18+20\right)i}{106})
Combine the real and imaginary parts in 10+18i+20i-36.
Re(\frac{-26+38i}{106})
Do the additions in 10-36+\left(18+20\right)i.
Re(-\frac{13}{53}+\frac{19}{53}i)
Divide -26+38i by 106 to get -\frac{13}{53}+\frac{19}{53}i.
-\frac{13}{53}
The real part of -\frac{13}{53}+\frac{19}{53}i is -\frac{13}{53}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}