Solve for x
x=-\frac{131}{150}\approx -0.873333333
Graph
Share
Copied to clipboard
112\left(-2-3x\right)=-93\left(2x+1\right)
Variable x cannot be equal to -\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 112\left(2x+1\right), the least common multiple of 1+2x,112.
-224-336x=-93\left(2x+1\right)
Use the distributive property to multiply 112 by -2-3x.
-224-336x=-186x-93
Use the distributive property to multiply -93 by 2x+1.
-224-336x+186x=-93
Add 186x to both sides.
-224-150x=-93
Combine -336x and 186x to get -150x.
-150x=-93+224
Add 224 to both sides.
-150x=131
Add -93 and 224 to get 131.
x=\frac{131}{-150}
Divide both sides by -150.
x=-\frac{131}{150}
Fraction \frac{131}{-150} can be rewritten as -\frac{131}{150} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}