Evaluate
-\frac{p^{15}}{3y^{11}}
Expand
-\frac{p^{15}}{3y^{11}}
Graph
Share
Copied to clipboard
\frac{-\left(p^{-4}y^{4}\right)^{-3}}{3p^{-3}\times \frac{1}{y}}
Cancel out 2 in both numerator and denominator.
\frac{-\left(p^{-4}\right)^{-3}\left(y^{4}\right)^{-3}}{3p^{-3}\times \frac{1}{y}}
Expand \left(p^{-4}y^{4}\right)^{-3}.
\frac{-p^{12}\left(y^{4}\right)^{-3}}{3p^{-3}\times \frac{1}{y}}
To raise a power to another power, multiply the exponents. Multiply -4 and -3 to get 12.
\frac{-p^{12}y^{-12}}{3p^{-3}\times \frac{1}{y}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{-p^{12}y^{-12}}{\frac{3}{y}p^{-3}}
Express 3\times \frac{1}{y} as a single fraction.
\frac{-p^{12}y^{-12}}{\frac{3p^{-3}}{y}}
Express \frac{3}{y}p^{-3} as a single fraction.
\frac{-p^{12}y^{-12}y}{3p^{-3}}
Divide -p^{12}y^{-12} by \frac{3p^{-3}}{y} by multiplying -p^{12}y^{-12} by the reciprocal of \frac{3p^{-3}}{y}.
\frac{-y^{-12}yp^{15}}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-y^{-11}p^{15}}{3}
To multiply powers of the same base, add their exponents. Add -12 and 1 to get -11.
\frac{-\left(p^{-4}y^{4}\right)^{-3}}{3p^{-3}\times \frac{1}{y}}
Cancel out 2 in both numerator and denominator.
\frac{-\left(p^{-4}\right)^{-3}\left(y^{4}\right)^{-3}}{3p^{-3}\times \frac{1}{y}}
Expand \left(p^{-4}y^{4}\right)^{-3}.
\frac{-p^{12}\left(y^{4}\right)^{-3}}{3p^{-3}\times \frac{1}{y}}
To raise a power to another power, multiply the exponents. Multiply -4 and -3 to get 12.
\frac{-p^{12}y^{-12}}{3p^{-3}\times \frac{1}{y}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{-p^{12}y^{-12}}{\frac{3}{y}p^{-3}}
Express 3\times \frac{1}{y} as a single fraction.
\frac{-p^{12}y^{-12}}{\frac{3p^{-3}}{y}}
Express \frac{3}{y}p^{-3} as a single fraction.
\frac{-p^{12}y^{-12}y}{3p^{-3}}
Divide -p^{12}y^{-12} by \frac{3p^{-3}}{y} by multiplying -p^{12}y^{-12} by the reciprocal of \frac{3p^{-3}}{y}.
\frac{-y^{-12}yp^{15}}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-y^{-11}p^{15}}{3}
To multiply powers of the same base, add their exponents. Add -12 and 1 to get -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}