Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-\left(p^{-4}y^{4}\right)^{-3}}{3p^{-3}\times \frac{1}{y}}
Cancel out 2 in both numerator and denominator.
\frac{-\left(p^{-4}\right)^{-3}\left(y^{4}\right)^{-3}}{3p^{-3}\times \frac{1}{y}}
Expand \left(p^{-4}y^{4}\right)^{-3}.
\frac{-p^{12}\left(y^{4}\right)^{-3}}{3p^{-3}\times \frac{1}{y}}
To raise a power to another power, multiply the exponents. Multiply -4 and -3 to get 12.
\frac{-p^{12}y^{-12}}{3p^{-3}\times \frac{1}{y}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{-p^{12}y^{-12}}{\frac{3}{y}p^{-3}}
Express 3\times \frac{1}{y} as a single fraction.
\frac{-p^{12}y^{-12}}{\frac{3p^{-3}}{y}}
Express \frac{3}{y}p^{-3} as a single fraction.
\frac{-p^{12}y^{-12}y}{3p^{-3}}
Divide -p^{12}y^{-12} by \frac{3p^{-3}}{y} by multiplying -p^{12}y^{-12} by the reciprocal of \frac{3p^{-3}}{y}.
\frac{-y^{-12}yp^{15}}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-y^{-11}p^{15}}{3}
To multiply powers of the same base, add their exponents. Add -12 and 1 to get -11.
\frac{-\left(p^{-4}y^{4}\right)^{-3}}{3p^{-3}\times \frac{1}{y}}
Cancel out 2 in both numerator and denominator.
\frac{-\left(p^{-4}\right)^{-3}\left(y^{4}\right)^{-3}}{3p^{-3}\times \frac{1}{y}}
Expand \left(p^{-4}y^{4}\right)^{-3}.
\frac{-p^{12}\left(y^{4}\right)^{-3}}{3p^{-3}\times \frac{1}{y}}
To raise a power to another power, multiply the exponents. Multiply -4 and -3 to get 12.
\frac{-p^{12}y^{-12}}{3p^{-3}\times \frac{1}{y}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{-p^{12}y^{-12}}{\frac{3}{y}p^{-3}}
Express 3\times \frac{1}{y} as a single fraction.
\frac{-p^{12}y^{-12}}{\frac{3p^{-3}}{y}}
Express \frac{3}{y}p^{-3} as a single fraction.
\frac{-p^{12}y^{-12}y}{3p^{-3}}
Divide -p^{12}y^{-12} by \frac{3p^{-3}}{y} by multiplying -p^{12}y^{-12} by the reciprocal of \frac{3p^{-3}}{y}.
\frac{-y^{-12}yp^{15}}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-y^{-11}p^{15}}{3}
To multiply powers of the same base, add their exponents. Add -12 and 1 to get -11.