Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-2}{x}+\frac{2x+8}{\left(x-2\right)\left(x+3\right)}
Factor x^{2}+x-6.
\frac{-2\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)}+\frac{\left(2x+8\right)x}{x\left(x-2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and \left(x-2\right)\left(x+3\right) is x\left(x-2\right)\left(x+3\right). Multiply \frac{-2}{x} times \frac{\left(x-2\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}. Multiply \frac{2x+8}{\left(x-2\right)\left(x+3\right)} times \frac{x}{x}.
\frac{-2\left(x-2\right)\left(x+3\right)+\left(2x+8\right)x}{x\left(x-2\right)\left(x+3\right)}
Since \frac{-2\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)} and \frac{\left(2x+8\right)x}{x\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{-2x^{2}-6x+4x+12+2x^{2}+8x}{x\left(x-2\right)\left(x+3\right)}
Do the multiplications in -2\left(x-2\right)\left(x+3\right)+\left(2x+8\right)x.
\frac{6x+12}{x\left(x-2\right)\left(x+3\right)}
Combine like terms in -2x^{2}-6x+4x+12+2x^{2}+8x.
\frac{6x+12}{x^{3}+x^{2}-6x}
Expand x\left(x-2\right)\left(x+3\right).
\frac{-2}{x}+\frac{2x+8}{\left(x-2\right)\left(x+3\right)}
Factor x^{2}+x-6.
\frac{-2\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)}+\frac{\left(2x+8\right)x}{x\left(x-2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and \left(x-2\right)\left(x+3\right) is x\left(x-2\right)\left(x+3\right). Multiply \frac{-2}{x} times \frac{\left(x-2\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}. Multiply \frac{2x+8}{\left(x-2\right)\left(x+3\right)} times \frac{x}{x}.
\frac{-2\left(x-2\right)\left(x+3\right)+\left(2x+8\right)x}{x\left(x-2\right)\left(x+3\right)}
Since \frac{-2\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)} and \frac{\left(2x+8\right)x}{x\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{-2x^{2}-6x+4x+12+2x^{2}+8x}{x\left(x-2\right)\left(x+3\right)}
Do the multiplications in -2\left(x-2\right)\left(x+3\right)+\left(2x+8\right)x.
\frac{6x+12}{x\left(x-2\right)\left(x+3\right)}
Combine like terms in -2x^{2}-6x+4x+12+2x^{2}+8x.
\frac{6x+12}{x^{3}+x^{2}-6x}
Expand x\left(x-2\right)\left(x+3\right).