Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-2}{\left(x-2\right)\left(x+2\right)}+\frac{x-1}{x\left(x-2\right)}
Factor x^{2}-4. Factor x^{2}-2x.
\frac{-2x}{x\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x\left(x-2\right) is x\left(x-2\right)\left(x+2\right). Multiply \frac{-2}{\left(x-2\right)\left(x+2\right)} times \frac{x}{x}. Multiply \frac{x-1}{x\left(x-2\right)} times \frac{x+2}{x+2}.
\frac{-2x+\left(x-1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}
Since \frac{-2x}{x\left(x-2\right)\left(x+2\right)} and \frac{\left(x-1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-2x+x^{2}+2x-x-2}{x\left(x-2\right)\left(x+2\right)}
Do the multiplications in -2x+\left(x-1\right)\left(x+2\right).
\frac{-x+x^{2}-2}{x\left(x-2\right)\left(x+2\right)}
Combine like terms in -2x+x^{2}+2x-x-2.
\frac{\left(x-2\right)\left(x+1\right)}{x\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{-x+x^{2}-2}{x\left(x-2\right)\left(x+2\right)}.
\frac{x+1}{x\left(x+2\right)}
Cancel out x-2 in both numerator and denominator.
\frac{x+1}{x^{2}+2x}
Expand x\left(x+2\right).
\frac{-2}{\left(x-2\right)\left(x+2\right)}+\frac{x-1}{x\left(x-2\right)}
Factor x^{2}-4. Factor x^{2}-2x.
\frac{-2x}{x\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x\left(x-2\right) is x\left(x-2\right)\left(x+2\right). Multiply \frac{-2}{\left(x-2\right)\left(x+2\right)} times \frac{x}{x}. Multiply \frac{x-1}{x\left(x-2\right)} times \frac{x+2}{x+2}.
\frac{-2x+\left(x-1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}
Since \frac{-2x}{x\left(x-2\right)\left(x+2\right)} and \frac{\left(x-1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-2x+x^{2}+2x-x-2}{x\left(x-2\right)\left(x+2\right)}
Do the multiplications in -2x+\left(x-1\right)\left(x+2\right).
\frac{-x+x^{2}-2}{x\left(x-2\right)\left(x+2\right)}
Combine like terms in -2x+x^{2}+2x-x-2.
\frac{\left(x-2\right)\left(x+1\right)}{x\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{-x+x^{2}-2}{x\left(x-2\right)\left(x+2\right)}.
\frac{x+1}{x\left(x+2\right)}
Cancel out x-2 in both numerator and denominator.
\frac{x+1}{x^{2}+2x}
Expand x\left(x+2\right).