Solve for j
j=-5
j=-2
Share
Copied to clipboard
5\left(-2\right)=\left(j+7\right)j
Variable j cannot be equal to -7 since division by zero is not defined. Multiply both sides of the equation by 5\left(j+7\right), the least common multiple of j+7,5.
-10=\left(j+7\right)j
Multiply 5 and -2 to get -10.
-10=j^{2}+7j
Use the distributive property to multiply j+7 by j.
j^{2}+7j=-10
Swap sides so that all variable terms are on the left hand side.
j^{2}+7j+10=0
Add 10 to both sides.
j=\frac{-7±\sqrt{7^{2}-4\times 10}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 7 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
j=\frac{-7±\sqrt{49-4\times 10}}{2}
Square 7.
j=\frac{-7±\sqrt{49-40}}{2}
Multiply -4 times 10.
j=\frac{-7±\sqrt{9}}{2}
Add 49 to -40.
j=\frac{-7±3}{2}
Take the square root of 9.
j=-\frac{4}{2}
Now solve the equation j=\frac{-7±3}{2} when ± is plus. Add -7 to 3.
j=-2
Divide -4 by 2.
j=-\frac{10}{2}
Now solve the equation j=\frac{-7±3}{2} when ± is minus. Subtract 3 from -7.
j=-5
Divide -10 by 2.
j=-2 j=-5
The equation is now solved.
5\left(-2\right)=\left(j+7\right)j
Variable j cannot be equal to -7 since division by zero is not defined. Multiply both sides of the equation by 5\left(j+7\right), the least common multiple of j+7,5.
-10=\left(j+7\right)j
Multiply 5 and -2 to get -10.
-10=j^{2}+7j
Use the distributive property to multiply j+7 by j.
j^{2}+7j=-10
Swap sides so that all variable terms are on the left hand side.
j^{2}+7j+\left(\frac{7}{2}\right)^{2}=-10+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
j^{2}+7j+\frac{49}{4}=-10+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
j^{2}+7j+\frac{49}{4}=\frac{9}{4}
Add -10 to \frac{49}{4}.
\left(j+\frac{7}{2}\right)^{2}=\frac{9}{4}
Factor j^{2}+7j+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(j+\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
j+\frac{7}{2}=\frac{3}{2} j+\frac{7}{2}=-\frac{3}{2}
Simplify.
j=-2 j=-5
Subtract \frac{7}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}