Evaluate
\frac{143}{6}\approx 23.833333333
Factor
\frac{11 \cdot 13}{2 \cdot 3} = 23\frac{5}{6} = 23.833333333333332
Share
Copied to clipboard
-\frac{2}{3}+\sqrt[4]{\frac{1}{16}}\times 49
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{2}{3}+\frac{1}{2}\times 49
Calculate \sqrt[4]{\frac{1}{16}} and get \frac{1}{2}.
-\frac{2}{3}+\frac{49}{2}
Multiply \frac{1}{2} and 49 to get \frac{49}{2}.
\frac{143}{6}
Add -\frac{2}{3} and \frac{49}{2} to get \frac{143}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}