Solve for m
m=\sqrt{2}+1\approx 2.414213562
Share
Copied to clipboard
-\left(-2\right)=\left(m-1\right)\sqrt{2}
Variable m cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 2\left(m-1\right), the least common multiple of 2-2m,2.
2=\left(m-1\right)\sqrt{2}
Multiply -1 and -2 to get 2.
2=m\sqrt{2}-\sqrt{2}
Use the distributive property to multiply m-1 by \sqrt{2}.
m\sqrt{2}-\sqrt{2}=2
Swap sides so that all variable terms are on the left hand side.
m\sqrt{2}=2+\sqrt{2}
Add \sqrt{2} to both sides.
\sqrt{2}m=\sqrt{2}+2
The equation is in standard form.
\frac{\sqrt{2}m}{\sqrt{2}}=\frac{\sqrt{2}+2}{\sqrt{2}}
Divide both sides by \sqrt{2}.
m=\frac{\sqrt{2}+2}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
m=\sqrt{2}+1
Divide 2+\sqrt{2} by \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}