Verify
true
Share
Copied to clipboard
-1-3\leq 2-\left(\frac{-1}{3}-2\left(-2\right)\right)
Divide -2 by 2 to get -1.
-4\leq 2-\left(\frac{-1}{3}-2\left(-2\right)\right)
Subtract 3 from -1 to get -4.
-4\leq 2-\left(-\frac{1}{3}-2\left(-2\right)\right)
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
-4\leq 2-\left(-\frac{1}{3}-\left(-4\right)\right)
Multiply 2 and -2 to get -4.
-4\leq 2-\left(-\frac{1}{3}+4\right)
The opposite of -4 is 4.
-4\leq 2-\left(-\frac{1}{3}+\frac{12}{3}\right)
Convert 4 to fraction \frac{12}{3}.
-4\leq 2-\frac{-1+12}{3}
Since -\frac{1}{3} and \frac{12}{3} have the same denominator, add them by adding their numerators.
-4\leq 2-\frac{11}{3}
Add -1 and 12 to get 11.
-4\leq \frac{6}{3}-\frac{11}{3}
Convert 2 to fraction \frac{6}{3}.
-4\leq \frac{6-11}{3}
Since \frac{6}{3} and \frac{11}{3} have the same denominator, subtract them by subtracting their numerators.
-4\leq -\frac{5}{3}
Subtract 11 from 6 to get -5.
-\frac{12}{3}\leq -\frac{5}{3}
Convert -4 to fraction -\frac{12}{3}.
\text{true}
Compare -\frac{12}{3} and -\frac{5}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}