Evaluate
-\sqrt{5}\left(\sqrt{6}+2\right)\approx -9.94936153
Share
Copied to clipboard
\frac{-2\sqrt{5}\left(-2-\sqrt{6}\right)}{\left(-2+\sqrt{6}\right)\left(-2-\sqrt{6}\right)}
Rationalize the denominator of \frac{-2\sqrt{5}}{-2+\sqrt{6}} by multiplying numerator and denominator by -2-\sqrt{6}.
\frac{-2\sqrt{5}\left(-2-\sqrt{6}\right)}{\left(-2\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(-2+\sqrt{6}\right)\left(-2-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-2\sqrt{5}\left(-2-\sqrt{6}\right)}{4-6}
Square -2. Square \sqrt{6}.
\frac{-2\sqrt{5}\left(-2-\sqrt{6}\right)}{-2}
Subtract 6 from 4 to get -2.
\frac{4\sqrt{5}+2\sqrt{5}\sqrt{6}}{-2}
Use the distributive property to multiply -2\sqrt{5} by -2-\sqrt{6}.
\frac{4\sqrt{5}+2\sqrt{30}}{-2}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
-2\sqrt{5}-\sqrt{30}
Divide each term of 4\sqrt{5}+2\sqrt{30} by -2 to get -2\sqrt{5}-\sqrt{30}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}