Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-2\sqrt{5}\left(-2-\sqrt{6}\right)}{\left(-2+\sqrt{6}\right)\left(-2-\sqrt{6}\right)}
Rationalize the denominator of \frac{-2\sqrt{5}}{-2+\sqrt{6}} by multiplying numerator and denominator by -2-\sqrt{6}.
\frac{-2\sqrt{5}\left(-2-\sqrt{6}\right)}{\left(-2\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(-2+\sqrt{6}\right)\left(-2-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-2\sqrt{5}\left(-2-\sqrt{6}\right)}{4-6}
Square -2. Square \sqrt{6}.
\frac{-2\sqrt{5}\left(-2-\sqrt{6}\right)}{-2}
Subtract 6 from 4 to get -2.
\frac{4\sqrt{5}+2\sqrt{5}\sqrt{6}}{-2}
Use the distributive property to multiply -2\sqrt{5} by -2-\sqrt{6}.
\frac{4\sqrt{5}+2\sqrt{30}}{-2}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
-2\sqrt{5}-\sqrt{30}
Divide each term of 4\sqrt{5}+2\sqrt{30} by -2 to get -2\sqrt{5}-\sqrt{30}.