Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{-4\left(1-\frac{3}{4}\right)^{2}+\sqrt{\frac{32}{128}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Calculate 2 to the power of 2 and get 4.
\frac{-4\times \left(\frac{1}{4}\right)^{2}+\sqrt{\frac{32}{128}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Subtract \frac{3}{4} from 1 to get \frac{1}{4}.
\frac{-4\times \frac{1}{16}+\sqrt{\frac{32}{128}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{-\frac{1}{4}+\sqrt{\frac{32}{128}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Multiply -4 and \frac{1}{16} to get -\frac{1}{4}.
\frac{-\frac{1}{4}+\sqrt{\frac{1}{4}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Reduce the fraction \frac{32}{128} to lowest terms by extracting and canceling out 32.
\frac{-\frac{1}{4}+\frac{1}{2}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Rewrite the square root of the division \frac{1}{4} as the division of square roots \frac{\sqrt{1}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{\frac{1}{4}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Add -\frac{1}{4} and \frac{1}{2} to get \frac{1}{4}.
\frac{\frac{1}{4}}{\left(-1-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Calculate 1 to the power of 2 and get 1.
\frac{\frac{1}{4}}{\left(-2\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Subtract 1 from -1 to get -2.
\frac{\frac{1}{4}}{-8-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Calculate -2 to the power of 3 and get -8.
\frac{\frac{1}{4}}{-483-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Subtract 475 from -8 to get -483.
\frac{\frac{1}{4}}{-483-\frac{12+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Multiply 3 and 4 to get 12.
\frac{\frac{1}{4}}{-483-\frac{13}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Add 12 and 1 to get 13.
\frac{\frac{1}{4}}{-\frac{1945}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Subtract \frac{13}{4} from -483 to get -\frac{1945}{4}.
\frac{1}{4}\left(-\frac{4}{1945}\right)-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Divide \frac{1}{4} by -\frac{1945}{4} by multiplying \frac{1}{4} by the reciprocal of -\frac{1945}{4}.
-\frac{1}{1945}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Multiply \frac{1}{4} and -\frac{4}{1945} to get -\frac{1}{1945}.
-\frac{1}{1945}-14+\sqrt[3]{64}\times 0\times 1
Calculate the square root of 196 and get 14.
-\frac{27231}{1945}+\sqrt[3]{64}\times 0\times 1
Subtract 14 from -\frac{1}{1945} to get -\frac{27231}{1945}.
-\frac{27231}{1945}+4\times 0\times 1
Calculate \sqrt[3]{64} and get 4.
-\frac{27231}{1945}+0\times 1
Multiply 4 and 0 to get 0.
-\frac{27231}{1945}+0
Multiply 0 and 1 to get 0.
-\frac{27231}{1945}
Add -\frac{27231}{1945} and 0 to get -\frac{27231}{1945}.