Evaluate
-\frac{27231}{1945}\approx -14.000514139
Factor
-\frac{27231}{1945} = -14\frac{1}{1945} = -14.000514138817481
Share
Copied to clipboard
\frac{-4\left(1-\frac{3}{4}\right)^{2}+\sqrt{\frac{32}{128}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Calculate 2 to the power of 2 and get 4.
\frac{-4\times \left(\frac{1}{4}\right)^{2}+\sqrt{\frac{32}{128}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Subtract \frac{3}{4} from 1 to get \frac{1}{4}.
\frac{-4\times \frac{1}{16}+\sqrt{\frac{32}{128}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{-\frac{1}{4}+\sqrt{\frac{32}{128}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Multiply -4 and \frac{1}{16} to get -\frac{1}{4}.
\frac{-\frac{1}{4}+\sqrt{\frac{1}{4}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Reduce the fraction \frac{32}{128} to lowest terms by extracting and canceling out 32.
\frac{-\frac{1}{4}+\frac{1}{2}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Rewrite the square root of the division \frac{1}{4} as the division of square roots \frac{\sqrt{1}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{\frac{1}{4}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Add -\frac{1}{4} and \frac{1}{2} to get \frac{1}{4}.
\frac{\frac{1}{4}}{\left(-1-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Calculate 1 to the power of 2 and get 1.
\frac{\frac{1}{4}}{\left(-2\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Subtract 1 from -1 to get -2.
\frac{\frac{1}{4}}{-8-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Calculate -2 to the power of 3 and get -8.
\frac{\frac{1}{4}}{-483-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Subtract 475 from -8 to get -483.
\frac{\frac{1}{4}}{-483-\frac{12+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Multiply 3 and 4 to get 12.
\frac{\frac{1}{4}}{-483-\frac{13}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Add 12 and 1 to get 13.
\frac{\frac{1}{4}}{-\frac{1945}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Subtract \frac{13}{4} from -483 to get -\frac{1945}{4}.
\frac{1}{4}\left(-\frac{4}{1945}\right)-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Divide \frac{1}{4} by -\frac{1945}{4} by multiplying \frac{1}{4} by the reciprocal of -\frac{1945}{4}.
-\frac{1}{1945}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Multiply \frac{1}{4} and -\frac{4}{1945} to get -\frac{1}{1945}.
-\frac{1}{1945}-14+\sqrt[3]{64}\times 0\times 1
Calculate the square root of 196 and get 14.
-\frac{27231}{1945}+\sqrt[3]{64}\times 0\times 1
Subtract 14 from -\frac{1}{1945} to get -\frac{27231}{1945}.
-\frac{27231}{1945}+4\times 0\times 1
Calculate \sqrt[3]{64} and get 4.
-\frac{27231}{1945}+0\times 1
Multiply 4 and 0 to get 0.
-\frac{27231}{1945}+0
Multiply 0 and 1 to get 0.
-\frac{27231}{1945}
Add -\frac{27231}{1945} and 0 to get -\frac{27231}{1945}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}