Evaluate
-\frac{4}{13}-\frac{19}{13}i\approx -0.307692308-1.461538462i
Real Part
-\frac{4}{13} = -0.3076923076923077
Share
Copied to clipboard
\frac{\left(-2+5i\right)\left(-3+2i\right)}{\left(-3-2i\right)\left(-3+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -3+2i.
\frac{\left(-2+5i\right)\left(-3+2i\right)}{\left(-3\right)^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2+5i\right)\left(-3+2i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-2\left(-3\right)-2\times \left(2i\right)+5i\left(-3\right)+5\times 2i^{2}}{13}
Multiply complex numbers -2+5i and -3+2i like you multiply binomials.
\frac{-2\left(-3\right)-2\times \left(2i\right)+5i\left(-3\right)+5\times 2\left(-1\right)}{13}
By definition, i^{2} is -1.
\frac{6-4i-15i-10}{13}
Do the multiplications in -2\left(-3\right)-2\times \left(2i\right)+5i\left(-3\right)+5\times 2\left(-1\right).
\frac{6-10+\left(-4-15\right)i}{13}
Combine the real and imaginary parts in 6-4i-15i-10.
\frac{-4-19i}{13}
Do the additions in 6-10+\left(-4-15\right)i.
-\frac{4}{13}-\frac{19}{13}i
Divide -4-19i by 13 to get -\frac{4}{13}-\frac{19}{13}i.
Re(\frac{\left(-2+5i\right)\left(-3+2i\right)}{\left(-3-2i\right)\left(-3+2i\right)})
Multiply both numerator and denominator of \frac{-2+5i}{-3-2i} by the complex conjugate of the denominator, -3+2i.
Re(\frac{\left(-2+5i\right)\left(-3+2i\right)}{\left(-3\right)^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2+5i\right)\left(-3+2i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-2\left(-3\right)-2\times \left(2i\right)+5i\left(-3\right)+5\times 2i^{2}}{13})
Multiply complex numbers -2+5i and -3+2i like you multiply binomials.
Re(\frac{-2\left(-3\right)-2\times \left(2i\right)+5i\left(-3\right)+5\times 2\left(-1\right)}{13})
By definition, i^{2} is -1.
Re(\frac{6-4i-15i-10}{13})
Do the multiplications in -2\left(-3\right)-2\times \left(2i\right)+5i\left(-3\right)+5\times 2\left(-1\right).
Re(\frac{6-10+\left(-4-15\right)i}{13})
Combine the real and imaginary parts in 6-4i-15i-10.
Re(\frac{-4-19i}{13})
Do the additions in 6-10+\left(-4-15\right)i.
Re(-\frac{4}{13}-\frac{19}{13}i)
Divide -4-19i by 13 to get -\frac{4}{13}-\frac{19}{13}i.
-\frac{4}{13}
The real part of -\frac{4}{13}-\frac{19}{13}i is -\frac{4}{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}