Evaluate (complex solution)
-\frac{7\sqrt{67}i}{67}\approx -0-0.85518611i
Real Part (complex solution)
0
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\frac{-18-2\left(-16\right)}{2\sqrt{31+9-41}\sqrt{4+9+54}}
Subtract 4 from -12 to get -16.
\frac{-18-\left(-32\right)}{2\sqrt{31+9-41}\sqrt{4+9+54}}
Multiply 2 and -16 to get -32.
\frac{-18+32}{2\sqrt{31+9-41}\sqrt{4+9+54}}
The opposite of -32 is 32.
\frac{14}{2\sqrt{31+9-41}\sqrt{4+9+54}}
Add -18 and 32 to get 14.
\frac{14}{2\sqrt{40-41}\sqrt{4+9+54}}
Add 31 and 9 to get 40.
\frac{14}{2\sqrt{-1}\sqrt{4+9+54}}
Subtract 41 from 40 to get -1.
\frac{14}{2i\sqrt{4+9+54}}
Calculate the square root of -1 and get i.
\frac{14}{2i\sqrt{13+54}}
Add 4 and 9 to get 13.
\frac{14}{2i\sqrt{67}}
Add 13 and 54 to get 67.
\frac{14\sqrt{67}}{2i\left(\sqrt{67}\right)^{2}}
Rationalize the denominator of \frac{14}{2i\sqrt{67}} by multiplying numerator and denominator by \sqrt{67}.
\frac{14\sqrt{67}}{2i\times 67}
The square of \sqrt{67} is 67.
\frac{14\sqrt{67}}{134i}
Multiply 2i and 67 to get 134i.
-\frac{7}{67}i\sqrt{67}
Divide 14\sqrt{67} by 134i to get -\frac{7}{67}i\sqrt{67}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}