Evaluate
-\frac{4}{3}-\frac{20}{3w}
Expand
-\frac{4}{3}-\frac{20}{3w}
Share
Copied to clipboard
\frac{-16ww}{3w\left(4w+1\right)}+\frac{1}{3w\left(4w+1\right)}-\frac{7}{w}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(4w+1\right) and 3w\left(4w+1\right) is 3w\left(4w+1\right). Multiply \frac{-16w}{3\left(4w+1\right)} times \frac{w}{w}.
\frac{-16ww+1}{3w\left(4w+1\right)}-\frac{7}{w}
Since \frac{-16ww}{3w\left(4w+1\right)} and \frac{1}{3w\left(4w+1\right)} have the same denominator, add them by adding their numerators.
\frac{-16w^{2}+1}{3w\left(4w+1\right)}-\frac{7}{w}
Do the multiplications in -16ww+1.
\frac{\left(-4w-1\right)\left(4w-1\right)}{3w\left(4w+1\right)}-\frac{7}{w}
Factor the expressions that are not already factored in \frac{-16w^{2}+1}{3w\left(4w+1\right)}.
\frac{-\left(4w-1\right)\left(4w+1\right)}{3w\left(4w+1\right)}-\frac{7}{w}
Extract the negative sign in -1-4w.
\frac{-\left(4w-1\right)}{3w}-\frac{7}{w}
Cancel out 4w+1 in both numerator and denominator.
\frac{-\left(4w-1\right)}{3w}-\frac{7\times 3}{3w}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3w and w is 3w. Multiply \frac{7}{w} times \frac{3}{3}.
\frac{-\left(4w-1\right)-7\times 3}{3w}
Since \frac{-\left(4w-1\right)}{3w} and \frac{7\times 3}{3w} have the same denominator, subtract them by subtracting their numerators.
\frac{-4w+1-21}{3w}
Do the multiplications in -\left(4w-1\right)-7\times 3.
\frac{-4w-20}{3w}
Combine like terms in -4w+1-21.
\frac{-16ww}{3w\left(4w+1\right)}+\frac{1}{3w\left(4w+1\right)}-\frac{7}{w}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(4w+1\right) and 3w\left(4w+1\right) is 3w\left(4w+1\right). Multiply \frac{-16w}{3\left(4w+1\right)} times \frac{w}{w}.
\frac{-16ww+1}{3w\left(4w+1\right)}-\frac{7}{w}
Since \frac{-16ww}{3w\left(4w+1\right)} and \frac{1}{3w\left(4w+1\right)} have the same denominator, add them by adding their numerators.
\frac{-16w^{2}+1}{3w\left(4w+1\right)}-\frac{7}{w}
Do the multiplications in -16ww+1.
\frac{\left(-4w-1\right)\left(4w-1\right)}{3w\left(4w+1\right)}-\frac{7}{w}
Factor the expressions that are not already factored in \frac{-16w^{2}+1}{3w\left(4w+1\right)}.
\frac{-\left(4w-1\right)\left(4w+1\right)}{3w\left(4w+1\right)}-\frac{7}{w}
Extract the negative sign in -1-4w.
\frac{-\left(4w-1\right)}{3w}-\frac{7}{w}
Cancel out 4w+1 in both numerator and denominator.
\frac{-\left(4w-1\right)}{3w}-\frac{7\times 3}{3w}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3w and w is 3w. Multiply \frac{7}{w} times \frac{3}{3}.
\frac{-\left(4w-1\right)-7\times 3}{3w}
Since \frac{-\left(4w-1\right)}{3w} and \frac{7\times 3}{3w} have the same denominator, subtract them by subtracting their numerators.
\frac{-4w+1-21}{3w}
Do the multiplications in -\left(4w-1\right)-7\times 3.
\frac{-4w-20}{3w}
Combine like terms in -4w+1-21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}