Factor
-\frac{\left(15x^{4}+48x^{2}+128\right)\left(\left(2-x\right)\left(x+2\right)\right)^{\frac{3}{2}}}{105}
Evaluate
-\frac{\left(4-x^{2}\right)^{\frac{3}{2}}\left(15x^{4}+48x^{2}+128\right)}{105}
Graph
Share
Copied to clipboard
\frac{-560\left(4-x^{2}\right)^{\frac{3}{2}}-15\left(4-x^{2}\right)^{\frac{7}{2}}+168\left(4-x^{2}\right)^{\frac{5}{2}}}{105}
Factor out \frac{1}{105}.
\left(4-x^{2}\right)^{\frac{3}{2}}\left(-560-15\left(4-x^{2}\right)^{2}+168\left(4-x^{2}\right)\right)
Consider -560\left(4-x^{2}\right)^{\frac{3}{2}}-15\left(4-x^{2}\right)^{\frac{7}{2}}+168\left(4-x^{2}\right)^{\frac{5}{2}}. Factor out \left(4-x^{2}\right)^{\frac{3}{2}}.
\frac{\left(4-x^{2}\right)^{\frac{3}{2}}\left(-15x^{4}-48x^{2}-128\right)}{105}
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: -15x^{4}-48x^{2}-128,4-x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}