Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. c
Tick mark Image

Similar Problems from Web Search

Share

\left(-15c^{5}\right)^{1}\times \frac{1}{3c^{8}}
Use the rules of exponents to simplify the expression.
\left(-15\right)^{1}\left(c^{5}\right)^{1}\times \frac{1}{3}\times \frac{1}{c^{8}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-15\right)^{1}\times \frac{1}{3}\left(c^{5}\right)^{1}\times \frac{1}{c^{8}}
Use the Commutative Property of Multiplication.
\left(-15\right)^{1}\times \frac{1}{3}c^{5}c^{8\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(-15\right)^{1}\times \frac{1}{3}c^{5}c^{-8}
Multiply 8 times -1.
\left(-15\right)^{1}\times \frac{1}{3}c^{5-8}
To multiply powers of the same base, add their exponents.
\left(-15\right)^{1}\times \frac{1}{3}c^{-3}
Add the exponents 5 and -8.
-15\times \frac{1}{3}c^{-3}
Raise -15 to the power 1.
-5c^{-3}
Multiply -15 times \frac{1}{3}.
\frac{\left(-15\right)^{1}c^{5}}{3^{1}c^{8}}
Use the rules of exponents to simplify the expression.
\frac{\left(-15\right)^{1}c^{5-8}}{3^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-15\right)^{1}c^{-3}}{3^{1}}
Subtract 8 from 5.
-5c^{-3}
Divide -15 by 3.
\frac{\mathrm{d}}{\mathrm{d}c}(\left(-\frac{15}{3}\right)c^{5-8})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}c}(-5c^{-3})
Do the arithmetic.
-3\left(-5\right)c^{-3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
15c^{-4}
Do the arithmetic.