Evaluate
\frac{35\sqrt{2}-27\sqrt{6}}{52}\approx -0.31997593
Quiz
Arithmetic
5 problems similar to:
\frac { - 13 - 9 \sqrt { 3 } } { 32 \sqrt { 2 } + 18 \sqrt { 6 } }
Share
Copied to clipboard
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{\left(32\sqrt{2}+18\sqrt{6}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}
Rationalize the denominator of \frac{-13-9\sqrt{3}}{32\sqrt{2}+18\sqrt{6}} by multiplying numerator and denominator by 32\sqrt{2}-18\sqrt{6}.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{\left(32\sqrt{2}\right)^{2}-\left(18\sqrt{6}\right)^{2}}
Consider \left(32\sqrt{2}+18\sqrt{6}\right)\left(32\sqrt{2}-18\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{32^{2}\left(\sqrt{2}\right)^{2}-\left(18\sqrt{6}\right)^{2}}
Expand \left(32\sqrt{2}\right)^{2}.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{1024\left(\sqrt{2}\right)^{2}-\left(18\sqrt{6}\right)^{2}}
Calculate 32 to the power of 2 and get 1024.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{1024\times 2-\left(18\sqrt{6}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{2048-\left(18\sqrt{6}\right)^{2}}
Multiply 1024 and 2 to get 2048.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{2048-18^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(18\sqrt{6}\right)^{2}.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{2048-324\left(\sqrt{6}\right)^{2}}
Calculate 18 to the power of 2 and get 324.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{2048-324\times 6}
The square of \sqrt{6} is 6.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{2048-1944}
Multiply 324 and 6 to get 1944.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{104}
Subtract 1944 from 2048 to get 104.
\frac{-416\sqrt{2}+234\sqrt{6}-288\sqrt{3}\sqrt{2}+162\sqrt{3}\sqrt{6}}{104}
Apply the distributive property by multiplying each term of -13-9\sqrt{3} by each term of 32\sqrt{2}-18\sqrt{6}.
\frac{-416\sqrt{2}+234\sqrt{6}-288\sqrt{6}+162\sqrt{3}\sqrt{6}}{104}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{-416\sqrt{2}-54\sqrt{6}+162\sqrt{3}\sqrt{6}}{104}
Combine 234\sqrt{6} and -288\sqrt{6} to get -54\sqrt{6}.
\frac{-416\sqrt{2}-54\sqrt{6}+162\sqrt{3}\sqrt{3}\sqrt{2}}{104}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{-416\sqrt{2}-54\sqrt{6}+162\times 3\sqrt{2}}{104}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{-416\sqrt{2}-54\sqrt{6}+486\sqrt{2}}{104}
Multiply 162 and 3 to get 486.
\frac{70\sqrt{2}-54\sqrt{6}}{104}
Combine -416\sqrt{2} and 486\sqrt{2} to get 70\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}