Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{\left(32\sqrt{2}+18\sqrt{6}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}
Rationalize the denominator of \frac{-13-9\sqrt{3}}{32\sqrt{2}+18\sqrt{6}} by multiplying numerator and denominator by 32\sqrt{2}-18\sqrt{6}.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{\left(32\sqrt{2}\right)^{2}-\left(18\sqrt{6}\right)^{2}}
Consider \left(32\sqrt{2}+18\sqrt{6}\right)\left(32\sqrt{2}-18\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{32^{2}\left(\sqrt{2}\right)^{2}-\left(18\sqrt{6}\right)^{2}}
Expand \left(32\sqrt{2}\right)^{2}.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{1024\left(\sqrt{2}\right)^{2}-\left(18\sqrt{6}\right)^{2}}
Calculate 32 to the power of 2 and get 1024.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{1024\times 2-\left(18\sqrt{6}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{2048-\left(18\sqrt{6}\right)^{2}}
Multiply 1024 and 2 to get 2048.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{2048-18^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(18\sqrt{6}\right)^{2}.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{2048-324\left(\sqrt{6}\right)^{2}}
Calculate 18 to the power of 2 and get 324.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{2048-324\times 6}
The square of \sqrt{6} is 6.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{2048-1944}
Multiply 324 and 6 to get 1944.
\frac{\left(-13-9\sqrt{3}\right)\left(32\sqrt{2}-18\sqrt{6}\right)}{104}
Subtract 1944 from 2048 to get 104.
\frac{-416\sqrt{2}+234\sqrt{6}-288\sqrt{3}\sqrt{2}+162\sqrt{3}\sqrt{6}}{104}
Apply the distributive property by multiplying each term of -13-9\sqrt{3} by each term of 32\sqrt{2}-18\sqrt{6}.
\frac{-416\sqrt{2}+234\sqrt{6}-288\sqrt{6}+162\sqrt{3}\sqrt{6}}{104}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{-416\sqrt{2}-54\sqrt{6}+162\sqrt{3}\sqrt{6}}{104}
Combine 234\sqrt{6} and -288\sqrt{6} to get -54\sqrt{6}.
\frac{-416\sqrt{2}-54\sqrt{6}+162\sqrt{3}\sqrt{3}\sqrt{2}}{104}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{-416\sqrt{2}-54\sqrt{6}+162\times 3\sqrt{2}}{104}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{-416\sqrt{2}-54\sqrt{6}+486\sqrt{2}}{104}
Multiply 162 and 3 to get 486.
\frac{70\sqrt{2}-54\sqrt{6}}{104}
Combine -416\sqrt{2} and 486\sqrt{2} to get 70\sqrt{2}.