Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-105x^{3}\right)^{1}\times \frac{1}{3x^{4}}
Use the rules of exponents to simplify the expression.
\left(-105\right)^{1}\left(x^{3}\right)^{1}\times \frac{1}{3}\times \frac{1}{x^{4}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-105\right)^{1}\times \frac{1}{3}\left(x^{3}\right)^{1}\times \frac{1}{x^{4}}
Use the Commutative Property of Multiplication.
\left(-105\right)^{1}\times \frac{1}{3}x^{3}x^{4\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(-105\right)^{1}\times \frac{1}{3}x^{3}x^{-4}
Multiply 4 times -1.
\left(-105\right)^{1}\times \frac{1}{3}x^{3-4}
To multiply powers of the same base, add their exponents.
\left(-105\right)^{1}\times \frac{1}{3}\times \frac{1}{x}
Add the exponents 3 and -4.
-105\times \frac{1}{3}\times \frac{1}{x}
Raise -105 to the power 1.
-35\times \frac{1}{x}
Multiply -105 times \frac{1}{3}.
\frac{\left(-105\right)^{1}x^{3}}{3^{1}x^{4}}
Use the rules of exponents to simplify the expression.
\frac{\left(-105\right)^{1}x^{3-4}}{3^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-105\right)^{1}\times \frac{1}{x}}{3^{1}}
Subtract 4 from 3.
-35\times \frac{1}{x}
Divide -105 by 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{105}{3}\right)x^{3-4})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(-35\times \frac{1}{x})
Do the arithmetic.
-\left(-35\right)x^{-1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
35x^{-2}
Do the arithmetic.