Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\left(-10a^{6}\right)^{1}\times \frac{1}{40a^{13}}
Use the rules of exponents to simplify the expression.
\left(-10\right)^{1}\left(a^{6}\right)^{1}\times \frac{1}{40}\times \frac{1}{a^{13}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-10\right)^{1}\times \frac{1}{40}\left(a^{6}\right)^{1}\times \frac{1}{a^{13}}
Use the Commutative Property of Multiplication.
\left(-10\right)^{1}\times \frac{1}{40}a^{6}a^{13\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(-10\right)^{1}\times \frac{1}{40}a^{6}a^{-13}
Multiply 13 times -1.
\left(-10\right)^{1}\times \frac{1}{40}a^{6-13}
To multiply powers of the same base, add their exponents.
\left(-10\right)^{1}\times \frac{1}{40}a^{-7}
Add the exponents 6 and -13.
-10\times \frac{1}{40}a^{-7}
Raise -10 to the power 1.
-\frac{1}{4}a^{-7}
Multiply -10 times \frac{1}{40}.
\frac{\left(-10\right)^{1}a^{6}}{40^{1}a^{13}}
Use the rules of exponents to simplify the expression.
\frac{\left(-10\right)^{1}a^{6-13}}{40^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-10\right)^{1}a^{-7}}{40^{1}}
Subtract 13 from 6.
-\frac{1}{4}a^{-7}
Reduce the fraction \frac{-10}{40} to lowest terms by extracting and canceling out 10.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{10}{40}\right)a^{6-13})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}a}(-\frac{1}{4}a^{-7})
Do the arithmetic.
-7\left(-\frac{1}{4}\right)a^{-7-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{7}{4}a^{-8}
Do the arithmetic.