Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-10-5i\right)\left(-6-6i\right)}{\left(-6+6i\right)\left(-6-6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -6-6i.
\frac{\left(-10-5i\right)\left(-6-6i\right)}{\left(-6\right)^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-10-5i\right)\left(-6-6i\right)}{72}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-10\left(-6\right)-10\times \left(-6i\right)-5i\left(-6\right)-5\left(-6\right)i^{2}}{72}
Multiply complex numbers -10-5i and -6-6i like you multiply binomials.
\frac{-10\left(-6\right)-10\times \left(-6i\right)-5i\left(-6\right)-5\left(-6\right)\left(-1\right)}{72}
By definition, i^{2} is -1.
\frac{60+60i+30i-30}{72}
Do the multiplications in -10\left(-6\right)-10\times \left(-6i\right)-5i\left(-6\right)-5\left(-6\right)\left(-1\right).
\frac{60-30+\left(60+30\right)i}{72}
Combine the real and imaginary parts in 60+60i+30i-30.
\frac{30+90i}{72}
Do the additions in 60-30+\left(60+30\right)i.
\frac{5}{12}+\frac{5}{4}i
Divide 30+90i by 72 to get \frac{5}{12}+\frac{5}{4}i.
Re(\frac{\left(-10-5i\right)\left(-6-6i\right)}{\left(-6+6i\right)\left(-6-6i\right)})
Multiply both numerator and denominator of \frac{-10-5i}{-6+6i} by the complex conjugate of the denominator, -6-6i.
Re(\frac{\left(-10-5i\right)\left(-6-6i\right)}{\left(-6\right)^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-10-5i\right)\left(-6-6i\right)}{72})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-10\left(-6\right)-10\times \left(-6i\right)-5i\left(-6\right)-5\left(-6\right)i^{2}}{72})
Multiply complex numbers -10-5i and -6-6i like you multiply binomials.
Re(\frac{-10\left(-6\right)-10\times \left(-6i\right)-5i\left(-6\right)-5\left(-6\right)\left(-1\right)}{72})
By definition, i^{2} is -1.
Re(\frac{60+60i+30i-30}{72})
Do the multiplications in -10\left(-6\right)-10\times \left(-6i\right)-5i\left(-6\right)-5\left(-6\right)\left(-1\right).
Re(\frac{60-30+\left(60+30\right)i}{72})
Combine the real and imaginary parts in 60+60i+30i-30.
Re(\frac{30+90i}{72})
Do the additions in 60-30+\left(60+30\right)i.
Re(\frac{5}{12}+\frac{5}{4}i)
Divide 30+90i by 72 to get \frac{5}{12}+\frac{5}{4}i.
\frac{5}{12}
The real part of \frac{5}{12}+\frac{5}{4}i is \frac{5}{12}.