Evaluate
-\frac{\sqrt{1400010}\left(x+1777\right)}{140001}
Factor
-\frac{\sqrt{1400010}\left(x+1777\right)}{140001}
Graph
Share
Copied to clipboard
\frac{-1780-\left(1x-3\right)}{\sqrt{10\times 203-1}\sqrt{10\times 1.59-9}}
Multiply -10 and 178 to get -1780.
\frac{-1780-\left(1x-3\right)}{\sqrt{2030-1}\sqrt{10\times 1.59-9}}
Multiply 10 and 203 to get 2030.
\frac{-1780-\left(1x-3\right)}{\sqrt{2029}\sqrt{10\times 1.59-9}}
Subtract 1 from 2030 to get 2029.
\frac{-1780-\left(1x-3\right)}{\sqrt{2029}\sqrt{15.9-9}}
Multiply 10 and 1.59 to get 15.9.
\frac{-1780-\left(1x-3\right)}{\sqrt{2029}\sqrt{6.9}}
Subtract 9 from 15.9 to get 6.9.
\frac{-1780-\left(1x-3\right)}{\sqrt{14000.1}}
To multiply \sqrt{2029} and \sqrt{6.9}, multiply the numbers under the square root.
\frac{\left(-1780-\left(1x-3\right)\right)\sqrt{14000.1}}{\left(\sqrt{14000.1}\right)^{2}}
Rationalize the denominator of \frac{-1780-\left(1x-3\right)}{\sqrt{14000.1}} by multiplying numerator and denominator by \sqrt{14000.1}.
\frac{\left(-1780-\left(1x-3\right)\right)\sqrt{14000.1}}{14000.1}
The square of \sqrt{14000.1} is 14000.1.
\frac{\left(-1780-x-\left(-3\right)\right)\sqrt{14000.1}}{14000.1}
To find the opposite of 1x-3, find the opposite of each term.
\frac{\left(-1780-x+3\right)\sqrt{14000.1}}{14000.1}
The opposite of -3 is 3.
\frac{\left(-1777-x\right)\sqrt{14000.1}}{14000.1}
Add -1780 and 3 to get -1777.
\frac{-1777\sqrt{14000.1}-x\sqrt{14000.1}}{14000.1}
Use the distributive property to multiply -1777-x by \sqrt{14000.1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}