Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-10+6i\right)\left(3-5i\right)}{\left(3+5i\right)\left(3-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-5i.
\frac{\left(-10+6i\right)\left(3-5i\right)}{3^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-10+6i\right)\left(3-5i\right)}{34}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-10\times 3-10\times \left(-5i\right)+6i\times 3+6\left(-5\right)i^{2}}{34}
Multiply complex numbers -10+6i and 3-5i like you multiply binomials.
\frac{-10\times 3-10\times \left(-5i\right)+6i\times 3+6\left(-5\right)\left(-1\right)}{34}
By definition, i^{2} is -1.
\frac{-30+50i+18i+30}{34}
Do the multiplications in -10\times 3-10\times \left(-5i\right)+6i\times 3+6\left(-5\right)\left(-1\right).
\frac{-30+30+\left(50+18\right)i}{34}
Combine the real and imaginary parts in -30+50i+18i+30.
\frac{68i}{34}
Do the additions in -30+30+\left(50+18\right)i.
2i
Divide 68i by 34 to get 2i.
Re(\frac{\left(-10+6i\right)\left(3-5i\right)}{\left(3+5i\right)\left(3-5i\right)})
Multiply both numerator and denominator of \frac{-10+6i}{3+5i} by the complex conjugate of the denominator, 3-5i.
Re(\frac{\left(-10+6i\right)\left(3-5i\right)}{3^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-10+6i\right)\left(3-5i\right)}{34})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-10\times 3-10\times \left(-5i\right)+6i\times 3+6\left(-5\right)i^{2}}{34})
Multiply complex numbers -10+6i and 3-5i like you multiply binomials.
Re(\frac{-10\times 3-10\times \left(-5i\right)+6i\times 3+6\left(-5\right)\left(-1\right)}{34})
By definition, i^{2} is -1.
Re(\frac{-30+50i+18i+30}{34})
Do the multiplications in -10\times 3-10\times \left(-5i\right)+6i\times 3+6\left(-5\right)\left(-1\right).
Re(\frac{-30+30+\left(50+18\right)i}{34})
Combine the real and imaginary parts in -30+50i+18i+30.
Re(\frac{68i}{34})
Do the additions in -30+30+\left(50+18\right)i.
Re(2i)
Divide 68i by 34 to get 2i.
0
The real part of 2i is 0.