Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-1-4i\right)\left(-5+9i\right)}{\left(-5-9i\right)\left(-5+9i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -5+9i.
\frac{\left(-1-4i\right)\left(-5+9i\right)}{\left(-5\right)^{2}-9^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-1-4i\right)\left(-5+9i\right)}{106}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-\left(-5\right)-9i-4i\left(-5\right)-4\times 9i^{2}}{106}
Multiply complex numbers -1-4i and -5+9i like you multiply binomials.
\frac{-\left(-5\right)-9i-4i\left(-5\right)-4\times 9\left(-1\right)}{106}
By definition, i^{2} is -1.
\frac{5-9i+20i+36}{106}
Do the multiplications in -\left(-5\right)-9i-4i\left(-5\right)-4\times 9\left(-1\right).
\frac{5+36+\left(-9+20\right)i}{106}
Combine the real and imaginary parts in 5-9i+20i+36.
\frac{41+11i}{106}
Do the additions in 5+36+\left(-9+20\right)i.
\frac{41}{106}+\frac{11}{106}i
Divide 41+11i by 106 to get \frac{41}{106}+\frac{11}{106}i.
Re(\frac{\left(-1-4i\right)\left(-5+9i\right)}{\left(-5-9i\right)\left(-5+9i\right)})
Multiply both numerator and denominator of \frac{-1-4i}{-5-9i} by the complex conjugate of the denominator, -5+9i.
Re(\frac{\left(-1-4i\right)\left(-5+9i\right)}{\left(-5\right)^{2}-9^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-1-4i\right)\left(-5+9i\right)}{106})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-\left(-5\right)-9i-4i\left(-5\right)-4\times 9i^{2}}{106})
Multiply complex numbers -1-4i and -5+9i like you multiply binomials.
Re(\frac{-\left(-5\right)-9i-4i\left(-5\right)-4\times 9\left(-1\right)}{106})
By definition, i^{2} is -1.
Re(\frac{5-9i+20i+36}{106})
Do the multiplications in -\left(-5\right)-9i-4i\left(-5\right)-4\times 9\left(-1\right).
Re(\frac{5+36+\left(-9+20\right)i}{106})
Combine the real and imaginary parts in 5-9i+20i+36.
Re(\frac{41+11i}{106})
Do the additions in 5+36+\left(-9+20\right)i.
Re(\frac{41}{106}+\frac{11}{106}i)
Divide 41+11i by 106 to get \frac{41}{106}+\frac{11}{106}i.
\frac{41}{106}
The real part of \frac{41}{106}+\frac{11}{106}i is \frac{41}{106}.