Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-2\left(x^{2}+2x+4\right)}{x^{2}+2x+4}\times \frac{\left(x+2\right)\left(x-2\right)}{-\left(x-1\right)}
Factor the expressions that are not already factored in \frac{-\left(2x^{2}+4x+8\right)}{x^{2}+2x+4}.
-2\times \frac{\left(x+2\right)\left(x-2\right)}{-\left(x-1\right)}
Cancel out x^{2}+2x+4 in both numerator and denominator.
-2\times \frac{x^{2}-4}{-\left(x-1\right)}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
-2\times \frac{x^{2}-4}{-x+1}
To find the opposite of x-1, find the opposite of each term.
\frac{-2\left(x^{2}-4\right)}{-x+1}
Express -2\times \frac{x^{2}-4}{-x+1} as a single fraction.
\frac{-2x^{2}+8}{-x+1}
Use the distributive property to multiply -2 by x^{2}-4.
\frac{-2\left(x^{2}+2x+4\right)}{x^{2}+2x+4}\times \frac{\left(x+2\right)\left(x-2\right)}{-\left(x-1\right)}
Factor the expressions that are not already factored in \frac{-\left(2x^{2}+4x+8\right)}{x^{2}+2x+4}.
-2\times \frac{\left(x+2\right)\left(x-2\right)}{-\left(x-1\right)}
Cancel out x^{2}+2x+4 in both numerator and denominator.
-2\times \frac{x^{2}-4}{-\left(x-1\right)}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
-2\times \frac{x^{2}-4}{-x+1}
To find the opposite of x-1, find the opposite of each term.
\frac{-2\left(x^{2}-4\right)}{-x+1}
Express -2\times \frac{x^{2}-4}{-x+1} as a single fraction.
\frac{-2x^{2}+8}{-x+1}
Use the distributive property to multiply -2 by x^{2}-4.