Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-\left(x^{2}+1\right)}{\left(x+1\right)\left(x^{2}+1\right)}+\frac{\left(2x+3\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x^{2}+1 is \left(x+1\right)\left(x^{2}+1\right). Multiply \frac{-1}{x+1} times \frac{x^{2}+1}{x^{2}+1}. Multiply \frac{2x+3}{x^{2}+1} times \frac{x+1}{x+1}.
\frac{-\left(x^{2}+1\right)+\left(2x+3\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}+1\right)}
Since \frac{-\left(x^{2}+1\right)}{\left(x+1\right)\left(x^{2}+1\right)} and \frac{\left(2x+3\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}-1+2x^{2}+2x+3x+3}{\left(x+1\right)\left(x^{2}+1\right)}
Do the multiplications in -\left(x^{2}+1\right)+\left(2x+3\right)\left(x+1\right).
\frac{x^{2}+2+5x}{\left(x+1\right)\left(x^{2}+1\right)}
Combine like terms in -x^{2}-1+2x^{2}+2x+3x+3.
\frac{x^{2}+2+5x}{x^{3}+x^{2}+x+1}
Expand \left(x+1\right)\left(x^{2}+1\right).
\frac{-\left(x^{2}+1\right)}{\left(x+1\right)\left(x^{2}+1\right)}+\frac{\left(2x+3\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x^{2}+1 is \left(x+1\right)\left(x^{2}+1\right). Multiply \frac{-1}{x+1} times \frac{x^{2}+1}{x^{2}+1}. Multiply \frac{2x+3}{x^{2}+1} times \frac{x+1}{x+1}.
\frac{-\left(x^{2}+1\right)+\left(2x+3\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}+1\right)}
Since \frac{-\left(x^{2}+1\right)}{\left(x+1\right)\left(x^{2}+1\right)} and \frac{\left(2x+3\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}-1+2x^{2}+2x+3x+3}{\left(x+1\right)\left(x^{2}+1\right)}
Do the multiplications in -\left(x^{2}+1\right)+\left(2x+3\right)\left(x+1\right).
\frac{x^{2}+2+5x}{\left(x+1\right)\left(x^{2}+1\right)}
Combine like terms in -x^{2}-1+2x^{2}+2x+3x+3.
\frac{x^{2}+2+5x}{x^{3}+x^{2}+x+1}
Expand \left(x+1\right)\left(x^{2}+1\right).