Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
-\frac{1}{2}x-\frac{1}{8}=x+\frac{5}{8}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
-\frac{1}{2}x-\frac{1}{8}-x=\frac{5}{8}
Subtract x from both sides.
-\frac{3}{2}x-\frac{1}{8}=\frac{5}{8}
Combine -\frac{1}{2}x and -x to get -\frac{3}{2}x.
-\frac{3}{2}x=\frac{5}{8}+\frac{1}{8}
Add \frac{1}{8} to both sides.
-\frac{3}{2}x=\frac{5+1}{8}
Since \frac{5}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
-\frac{3}{2}x=\frac{6}{8}
Add 5 and 1 to get 6.
-\frac{3}{2}x=\frac{3}{4}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
x=\frac{3}{4}\left(-\frac{2}{3}\right)
Multiply both sides by -\frac{2}{3}, the reciprocal of -\frac{3}{2}.
x=\frac{3\left(-2\right)}{4\times 3}
Multiply \frac{3}{4} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-2}{4}
Cancel out 3 in both numerator and denominator.
x=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}