Solve for x
x>-2
Graph
Share
Copied to clipboard
-\frac{1}{2}-4x<\frac{15}{2}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
-4x<\frac{15}{2}+\frac{1}{2}
Add \frac{1}{2} to both sides.
-4x<\frac{15+1}{2}
Since \frac{15}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
-4x<\frac{16}{2}
Add 15 and 1 to get 16.
-4x<8
Divide 16 by 2 to get 8.
x>\frac{8}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x>-2
Divide 8 by -4 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}