Evaluate
-\frac{3}{8}=-0.375
Factor
-\frac{3}{8} = -0.375
Share
Copied to clipboard
-\frac{1}{12}-\frac{\frac{7}{12}\times \frac{2}{3}}{\frac{4}{3}}
Fraction \frac{-1}{12} can be rewritten as -\frac{1}{12} by extracting the negative sign.
-\frac{1}{12}-\frac{\frac{7\times 2}{12\times 3}}{\frac{4}{3}}
Multiply \frac{7}{12} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
-\frac{1}{12}-\frac{\frac{14}{36}}{\frac{4}{3}}
Do the multiplications in the fraction \frac{7\times 2}{12\times 3}.
-\frac{1}{12}-\frac{\frac{7}{18}}{\frac{4}{3}}
Reduce the fraction \frac{14}{36} to lowest terms by extracting and canceling out 2.
-\frac{1}{12}-\frac{7}{18}\times \frac{3}{4}
Divide \frac{7}{18} by \frac{4}{3} by multiplying \frac{7}{18} by the reciprocal of \frac{4}{3}.
-\frac{1}{12}-\frac{7\times 3}{18\times 4}
Multiply \frac{7}{18} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{1}{12}-\frac{21}{72}
Do the multiplications in the fraction \frac{7\times 3}{18\times 4}.
-\frac{1}{12}-\frac{7}{24}
Reduce the fraction \frac{21}{72} to lowest terms by extracting and canceling out 3.
-\frac{2}{24}-\frac{7}{24}
Least common multiple of 12 and 24 is 24. Convert -\frac{1}{12} and \frac{7}{24} to fractions with denominator 24.
\frac{-2-7}{24}
Since -\frac{2}{24} and \frac{7}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{-9}{24}
Subtract 7 from -2 to get -9.
-\frac{3}{8}
Reduce the fraction \frac{-9}{24} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}