Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-\left(1+2\sqrt{11}\right)}{\left(1-2\sqrt{11}\right)\left(1+2\sqrt{11}\right)}
Rationalize the denominator of \frac{-1}{1-2\sqrt{11}} by multiplying numerator and denominator by 1+2\sqrt{11}.
\frac{-\left(1+2\sqrt{11}\right)}{1^{2}-\left(-2\sqrt{11}\right)^{2}}
Consider \left(1-2\sqrt{11}\right)\left(1+2\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-\left(1+2\sqrt{11}\right)}{1-\left(-2\sqrt{11}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{-\left(1+2\sqrt{11}\right)}{1-\left(-2\right)^{2}\left(\sqrt{11}\right)^{2}}
Expand \left(-2\sqrt{11}\right)^{2}.
\frac{-\left(1+2\sqrt{11}\right)}{1-4\left(\sqrt{11}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{-\left(1+2\sqrt{11}\right)}{1-4\times 11}
The square of \sqrt{11} is 11.
\frac{-\left(1+2\sqrt{11}\right)}{1-44}
Multiply 4 and 11 to get 44.
\frac{-\left(1+2\sqrt{11}\right)}{-43}
Subtract 44 from 1 to get -43.
\frac{-1-2\sqrt{11}}{-43}
To find the opposite of 1+2\sqrt{11}, find the opposite of each term.
\frac{1+2\sqrt{11}}{43}
Multiply both numerator and denominator by -1.