Evaluate
\frac{2\sqrt{11}+1}{43}\approx 0.177517432
Share
Copied to clipboard
\frac{-\left(1+2\sqrt{11}\right)}{\left(1-2\sqrt{11}\right)\left(1+2\sqrt{11}\right)}
Rationalize the denominator of \frac{-1}{1-2\sqrt{11}} by multiplying numerator and denominator by 1+2\sqrt{11}.
\frac{-\left(1+2\sqrt{11}\right)}{1^{2}-\left(-2\sqrt{11}\right)^{2}}
Consider \left(1-2\sqrt{11}\right)\left(1+2\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-\left(1+2\sqrt{11}\right)}{1-\left(-2\sqrt{11}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{-\left(1+2\sqrt{11}\right)}{1-\left(-2\right)^{2}\left(\sqrt{11}\right)^{2}}
Expand \left(-2\sqrt{11}\right)^{2}.
\frac{-\left(1+2\sqrt{11}\right)}{1-4\left(\sqrt{11}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{-\left(1+2\sqrt{11}\right)}{1-4\times 11}
The square of \sqrt{11} is 11.
\frac{-\left(1+2\sqrt{11}\right)}{1-44}
Multiply 4 and 11 to get 44.
\frac{-\left(1+2\sqrt{11}\right)}{-43}
Subtract 44 from 1 to get -43.
\frac{-1-2\sqrt{11}}{-43}
To find the opposite of 1+2\sqrt{11}, find the opposite of each term.
\frac{1+2\sqrt{11}}{43}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}