Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-1+2i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-i.
\frac{\left(-1+2i\right)\left(2-i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-1+2i\right)\left(2-i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-2-\left(-i\right)+2i\times 2+2\left(-1\right)i^{2}}{5}
Multiply complex numbers -1+2i and 2-i like you multiply binomials.
\frac{-2-\left(-i\right)+2i\times 2+2\left(-1\right)\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{-2+i+4i+2}{5}
Do the multiplications in -2-\left(-i\right)+2i\times 2+2\left(-1\right)\left(-1\right).
\frac{-2+2+\left(1+4\right)i}{5}
Combine the real and imaginary parts in -2+i+4i+2.
\frac{5i}{5}
Do the additions in -2+2+\left(1+4\right)i.
i
Divide 5i by 5 to get i.
Re(\frac{\left(-1+2i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Multiply both numerator and denominator of \frac{-1+2i}{2+i} by the complex conjugate of the denominator, 2-i.
Re(\frac{\left(-1+2i\right)\left(2-i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-1+2i\right)\left(2-i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-2-\left(-i\right)+2i\times 2+2\left(-1\right)i^{2}}{5})
Multiply complex numbers -1+2i and 2-i like you multiply binomials.
Re(\frac{-2-\left(-i\right)+2i\times 2+2\left(-1\right)\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{-2+i+4i+2}{5})
Do the multiplications in -2-\left(-i\right)+2i\times 2+2\left(-1\right)\left(-1\right).
Re(\frac{-2+2+\left(1+4\right)i}{5})
Combine the real and imaginary parts in -2+i+4i+2.
Re(\frac{5i}{5})
Do the additions in -2+2+\left(1+4\right)i.
Re(i)
Divide 5i by 5 to get i.
0
The real part of i is 0.