Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-\left(9\times 2\right)^{-4}\right)\times 3^{4}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(-18^{-4}\right)\times 3^{4}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Multiply 9 and 2 to get 18.
\frac{-\frac{1}{104976}\times 3^{4}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calculate 18 to the power of -4 and get \frac{1}{104976}.
\frac{-\frac{1}{104976}\times 81}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calculate 3 to the power of 4 and get 81.
\frac{-\frac{1}{1296}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Multiply -\frac{1}{104976} and 81 to get -\frac{1}{1296}.
\frac{-\frac{1}{1296}}{6^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Multiply 2 and 3 to get 6.
\frac{-\frac{1}{1296}}{216\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calculate 6 to the power of 3 and get 216.
\frac{-\frac{1}{1296}}{216\times 4\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calculate 2 to the power of 2 and get 4.
\frac{-\frac{1}{1296}}{864\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Multiply 216 and 4 to get 864.
\frac{-\frac{1}{1296}}{864\times 27-\left(2^{3}-3\right)^{-4}}
Calculate 3 to the power of 3 and get 27.
\frac{-\frac{1}{1296}}{23328-\left(2^{3}-3\right)^{-4}}
Multiply 864 and 27 to get 23328.
\frac{-\frac{1}{1296}}{23328-\left(8-3\right)^{-4}}
Calculate 2 to the power of 3 and get 8.
\frac{-\frac{1}{1296}}{23328-5^{-4}}
Subtract 3 from 8 to get 5.
\frac{-\frac{1}{1296}}{23328-\frac{1}{625}}
Calculate 5 to the power of -4 and get \frac{1}{625}.
\frac{-\frac{1}{1296}}{\frac{14579999}{625}}
Subtract \frac{1}{625} from 23328 to get \frac{14579999}{625}.
-\frac{1}{1296}\times \frac{625}{14579999}
Divide -\frac{1}{1296} by \frac{14579999}{625} by multiplying -\frac{1}{1296} by the reciprocal of \frac{14579999}{625}.
-\frac{625}{18895678704}
Multiply -\frac{1}{1296} and \frac{625}{14579999} to get -\frac{625}{18895678704}.