Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-\left(-x^{2}\right)^{3}\right)\left(-y^{2}\right)^{3}z^{3}}{\left(-\left(\left(-x\right)yz\right)^{2}\right)\left(-2xy\right)^{0}}
Expand \left(\left(-y^{2}\right)z\right)^{3}.
\frac{\left(-\left(-x^{2}\right)^{3}\right)\left(-y^{2}\right)^{3}z^{3}}{\left(-\left(-x\right)^{2}y^{2}z^{2}\right)\left(-2xy\right)^{0}}
Expand \left(\left(-x\right)yz\right)^{2}.
\frac{\left(-\left(-x^{2}\right)^{3}\right)\left(-y^{2}\right)^{3}z^{3}}{\left(-x^{2}y^{2}z^{2}\right)\left(-2xy\right)^{0}}
Calculate -x to the power of 2 and get x^{2}.
\frac{\left(-\left(-x^{2}\right)^{3}\right)\left(-y^{2}\right)^{3}z^{3}}{\left(-x^{2}y^{2}z^{2}\right)\times 1}
Calculate -2xy to the power of 0 and get 1.
\frac{-z^{3}\left(-x^{2}\right)^{3}\left(-y^{2}\right)^{3}}{-x^{2}y^{2}z^{2}}
Factor the expressions that are not already factored.
\frac{z\left(-x^{2}\right)^{3}\left(-y^{2}\right)^{3}}{x^{2}y^{2}}
Cancel out -z^{2} in both numerator and denominator.
\frac{z\left(xy\right)^{6}}{\left(xy\right)^{2}}
Expand the expression.
z\left(xy\right)^{4}
Cancel out \left(xy\right)^{2} in both numerator and denominator.
zx^{4}y^{4}
Expand \left(xy\right)^{4}.