Evaluate
\sqrt{5}+2\approx 4.236067977
Factor
\sqrt{5} + 2 = 4.236067977
Share
Copied to clipboard
\frac{4+\sqrt{\left(-4\right)^{2}-4\times 1\left(-1\right)}}{2\times 1}
The opposite of -4 is 4.
\frac{4+\sqrt{16-4\times 1\left(-1\right)}}{2\times 1}
Calculate -4 to the power of 2 and get 16.
\frac{4+\sqrt{16-4\left(-1\right)}}{2\times 1}
Multiply 4 and 1 to get 4.
\frac{4+\sqrt{16-\left(-4\right)}}{2\times 1}
Multiply 4 and -1 to get -4.
\frac{4+\sqrt{16+4}}{2\times 1}
The opposite of -4 is 4.
\frac{4+\sqrt{20}}{2\times 1}
Add 16 and 4 to get 20.
\frac{4+2\sqrt{5}}{2\times 1}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{4+2\sqrt{5}}{2}
Multiply 2 and 1 to get 2.
2+\sqrt{5}
Divide each term of 4+2\sqrt{5} by 2 to get 2+\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}