Evaluate
\frac{1}{5}=0.2
Factor
\frac{1}{5} = 0.2
Share
Copied to clipboard
\frac{-\left(\frac{3\times 1}{5\times 6}+\frac{5}{6}\right)+\frac{1}{2}}{\frac{-13}{6}}
Multiply \frac{3}{5} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(\frac{3}{30}+\frac{5}{6}\right)+\frac{1}{2}}{\frac{-13}{6}}
Do the multiplications in the fraction \frac{3\times 1}{5\times 6}.
\frac{-\left(\frac{1}{10}+\frac{5}{6}\right)+\frac{1}{2}}{\frac{-13}{6}}
Reduce the fraction \frac{3}{30} to lowest terms by extracting and canceling out 3.
\frac{-\left(\frac{3}{30}+\frac{25}{30}\right)+\frac{1}{2}}{\frac{-13}{6}}
Least common multiple of 10 and 6 is 30. Convert \frac{1}{10} and \frac{5}{6} to fractions with denominator 30.
\frac{-\frac{3+25}{30}+\frac{1}{2}}{\frac{-13}{6}}
Since \frac{3}{30} and \frac{25}{30} have the same denominator, add them by adding their numerators.
\frac{-\frac{28}{30}+\frac{1}{2}}{\frac{-13}{6}}
Add 3 and 25 to get 28.
\frac{-\frac{14}{15}+\frac{1}{2}}{\frac{-13}{6}}
Reduce the fraction \frac{28}{30} to lowest terms by extracting and canceling out 2.
\frac{-\frac{28}{30}+\frac{15}{30}}{\frac{-13}{6}}
Least common multiple of 15 and 2 is 30. Convert -\frac{14}{15} and \frac{1}{2} to fractions with denominator 30.
\frac{\frac{-28+15}{30}}{\frac{-13}{6}}
Since -\frac{28}{30} and \frac{15}{30} have the same denominator, add them by adding their numerators.
\frac{-\frac{13}{30}}{\frac{-13}{6}}
Add -28 and 15 to get -13.
\frac{-\frac{13}{30}}{-\frac{13}{6}}
Fraction \frac{-13}{6} can be rewritten as -\frac{13}{6} by extracting the negative sign.
-\frac{13}{30}\left(-\frac{6}{13}\right)
Divide -\frac{13}{30} by -\frac{13}{6} by multiplying -\frac{13}{30} by the reciprocal of -\frac{13}{6}.
\frac{-13\left(-6\right)}{30\times 13}
Multiply -\frac{13}{30} times -\frac{6}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{78}{390}
Do the multiplications in the fraction \frac{-13\left(-6\right)}{30\times 13}.
\frac{1}{5}
Reduce the fraction \frac{78}{390} to lowest terms by extracting and canceling out 78.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}