Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-4\sqrt{5}}{4\sqrt{3}}
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
\frac{\left(-4\sqrt{5}\right)\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{-4\sqrt{5}}{4\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(-4\sqrt{5}\right)\sqrt{3}}{4\times 3}
The square of \sqrt{3} is 3.
\frac{\left(-4\sqrt{5}\right)\sqrt{3}}{12}
Multiply 4 and 3 to get 12.
\frac{-4\sqrt{5}\sqrt{3}}{12}
Multiply -1 and 4 to get -4.
\frac{-4\sqrt{15}}{12}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
-\frac{1}{3}\sqrt{15}
Divide -4\sqrt{15} by 12 to get -\frac{1}{3}\sqrt{15}.