Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(-\sqrt{45}\right)y}{3\sqrt{5}}
Cancel out y in both numerator and denominator.
\frac{\left(-3\sqrt{5}\right)y}{3\sqrt{5}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{-3\sqrt{5}y}{3\sqrt{5}}
Factor the expressions that are not already factored.
\frac{-\sqrt{5}y}{\sqrt{5}}
Cancel out 3 in both numerator and denominator.
\frac{-\sqrt{5}y\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{-\sqrt{5}y}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{-\sqrt{5}y\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{-5y}{5}
Multiply \sqrt{5} and \sqrt{5} to get 5.
-y
Cancel out 5 and 5.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\left(-\sqrt{45}\right)y}{3\sqrt{5}})
Cancel out y in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\left(-3\sqrt{5}\right)y}{3\sqrt{5}})
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{-3\sqrt{5}y}{3\sqrt{5}})
Factor the expressions that are not already factored in \frac{\left(-3\sqrt{5}\right)y}{3\sqrt{5}}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{-\sqrt{5}y}{\sqrt{5}})
Cancel out 3 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{-\sqrt{5}y\sqrt{5}}{\left(\sqrt{5}\right)^{2}})
Rationalize the denominator of \frac{-\sqrt{5}y}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{-\sqrt{5}y\sqrt{5}}{5})
The square of \sqrt{5} is 5.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{-5y}{5})
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{\mathrm{d}}{\mathrm{d}y}(-y)
Cancel out 5 and 5.
-y^{1-1}
The derivative of ax^{n} is nax^{n-1}.
-y^{0}
Subtract 1 from 1.
-1
For any term t except 0, t^{0}=1.