Evaluate
\frac{4\sqrt{3}\left(3\sqrt{2}+1\right)}{17}\approx 2.13659295
Share
Copied to clipboard
\frac{-4\sqrt{15}}{\sqrt{5}-3\sqrt{10}}
Factor 240=4^{2}\times 15. Rewrite the square root of the product \sqrt{4^{2}\times 15} as the product of square roots \sqrt{4^{2}}\sqrt{15}. Take the square root of 4^{2}.
\frac{\left(-4\sqrt{15}\right)\left(\sqrt{5}+3\sqrt{10}\right)}{\left(\sqrt{5}-3\sqrt{10}\right)\left(\sqrt{5}+3\sqrt{10}\right)}
Rationalize the denominator of \frac{-4\sqrt{15}}{\sqrt{5}-3\sqrt{10}} by multiplying numerator and denominator by \sqrt{5}+3\sqrt{10}.
\frac{\left(-4\sqrt{15}\right)\left(\sqrt{5}+3\sqrt{10}\right)}{\left(\sqrt{5}\right)^{2}-\left(-3\sqrt{10}\right)^{2}}
Consider \left(\sqrt{5}-3\sqrt{10}\right)\left(\sqrt{5}+3\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-4\sqrt{15}\right)\left(\sqrt{5}+3\sqrt{10}\right)}{5-\left(-3\sqrt{10}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{\left(-4\sqrt{15}\right)\left(\sqrt{5}+3\sqrt{10}\right)}{5-\left(-3\right)^{2}\left(\sqrt{10}\right)^{2}}
Expand \left(-3\sqrt{10}\right)^{2}.
\frac{\left(-4\sqrt{15}\right)\left(\sqrt{5}+3\sqrt{10}\right)}{5-9\left(\sqrt{10}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{\left(-4\sqrt{15}\right)\left(\sqrt{5}+3\sqrt{10}\right)}{5-9\times 10}
The square of \sqrt{10} is 10.
\frac{\left(-4\sqrt{15}\right)\left(\sqrt{5}+3\sqrt{10}\right)}{5-90}
Multiply 9 and 10 to get 90.
\frac{\left(-4\sqrt{15}\right)\left(\sqrt{5}+3\sqrt{10}\right)}{-85}
Subtract 90 from 5 to get -85.
\frac{\left(-4\sqrt{15}\right)\sqrt{5}+3\left(-4\sqrt{15}\right)\sqrt{10}}{-85}
Use the distributive property to multiply -4\sqrt{15} by \sqrt{5}+3\sqrt{10}.
\frac{-4\sqrt{15}\sqrt{5}+3\left(-1\right)\times 4\sqrt{15}\sqrt{10}}{-85}
Multiply -1 and 4 to get -4.
\frac{-4\sqrt{5}\sqrt{3}\sqrt{5}+3\left(-1\right)\times 4\sqrt{15}\sqrt{10}}{-85}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{-4\times 5\sqrt{3}+3\left(-1\right)\times 4\sqrt{15}\sqrt{10}}{-85}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{-4\times 5\sqrt{3}-3\times 4\sqrt{15}\sqrt{10}}{-85}
Multiply 3 and -1 to get -3.
\frac{-4\times 5\sqrt{3}-12\sqrt{15}\sqrt{10}}{-85}
Multiply -3 and 4 to get -12.
\frac{-4\times 5\sqrt{3}-12\sqrt{150}}{-85}
To multiply \sqrt{15} and \sqrt{10}, multiply the numbers under the square root.
\frac{-20\sqrt{3}-12\sqrt{150}}{-85}
Multiply -4 and 5 to get -20.
\frac{-20\sqrt{3}-12\times 5\sqrt{6}}{-85}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
\frac{-20\sqrt{3}-60\sqrt{6}}{-85}
Multiply -12 and 5 to get -60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}