Evaluate
-5
Factor
-5
Share
Copied to clipboard
\frac{-\sqrt{2}-\frac{3\sqrt{2}}{2}}{\frac{1}{2}\sqrt{2}}
Combine \frac{3\sqrt{2}}{2} and -\sqrt{2} to get \frac{1}{2}\sqrt{2}.
\frac{\left(-\sqrt{2}-\frac{3\sqrt{2}}{2}\right)\sqrt{2}}{\frac{1}{2}\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{-\sqrt{2}-\frac{3\sqrt{2}}{2}}{\frac{1}{2}\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(-\sqrt{2}-\frac{3\sqrt{2}}{2}\right)\sqrt{2}}{\frac{1}{2}\times 2}
The square of \sqrt{2} is 2.
\frac{\left(-\sqrt{2}-\frac{3\sqrt{2}}{2}\right)\sqrt{2}}{1}
Cancel out 2 and 2.
\left(-\sqrt{2}-\frac{3\sqrt{2}}{2}\right)\sqrt{2}
Anything divided by one gives itself.
\left(-\sqrt{2}\right)\sqrt{2}+\left(-\frac{3\sqrt{2}}{2}\right)\sqrt{2}
Use the distributive property to multiply -\sqrt{2}-\frac{3\sqrt{2}}{2} by \sqrt{2}.
\left(-\sqrt{2}\right)\sqrt{2}+\frac{-3\sqrt{2}\sqrt{2}}{2}
Express \left(-\frac{3\sqrt{2}}{2}\right)\sqrt{2} as a single fraction.
\left(-\sqrt{2}\right)\sqrt{2}+\frac{-3\times 2}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\left(-\sqrt{2}\right)\sqrt{2}-3
Cancel out 2 and 2.
-2-3
Multiply \sqrt{2} and \sqrt{2} to get 2.
-5
Subtract 3 from -2 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}