Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-\sqrt{14}+\frac{\sqrt{10}}{1}+\frac{2\sqrt{2}}{\sqrt{5}+\sqrt{7}}
Anything divided by one gives itself.
-\sqrt{14}+\sqrt{10}+\frac{2\sqrt{2}}{\sqrt{5}+\sqrt{7}}
Anything divided by one gives itself.
-\sqrt{14}+\sqrt{10}+\frac{2\sqrt{2}\left(\sqrt{5}-\sqrt{7}\right)}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{5}+\sqrt{7}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{7}.
-\sqrt{14}+\sqrt{10}+\frac{2\sqrt{2}\left(\sqrt{5}-\sqrt{7}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\sqrt{14}+\sqrt{10}+\frac{2\sqrt{2}\left(\sqrt{5}-\sqrt{7}\right)}{5-7}
Square \sqrt{5}. Square \sqrt{7}.
-\sqrt{14}+\sqrt{10}+\frac{2\sqrt{2}\left(\sqrt{5}-\sqrt{7}\right)}{-2}
Subtract 7 from 5 to get -2.
-\sqrt{14}+\sqrt{10}-\sqrt{2}\left(\sqrt{5}-\sqrt{7}\right)
Cancel out -2 and -2.
-\sqrt{14}+\sqrt{10}-\sqrt{2}\sqrt{5}+\sqrt{2}\sqrt{7}
Use the distributive property to multiply -\sqrt{2} by \sqrt{5}-\sqrt{7}.
-\sqrt{14}+\sqrt{10}-\sqrt{10}+\sqrt{2}\sqrt{7}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
-\sqrt{14}+\sqrt{10}-\sqrt{10}+\sqrt{14}
To multiply \sqrt{2} and \sqrt{7}, multiply the numbers under the square root.
-\sqrt{14}+\sqrt{14}
Combine \sqrt{10} and -\sqrt{10} to get 0.
0
Combine -\sqrt{14} and \sqrt{14} to get 0.