Solve for x
x=-\frac{1}{3}\approx -0.333333333
x=-2
Graph
Share
Copied to clipboard
\frac{-\frac{3}{4}+1}{1-\frac{3}{4}x\left(-1\right)}=\frac{x-\left(-\frac{3}{4}\right)}{1-\frac{3}{4}x}
The opposite of -1 is 1.
\frac{\frac{1}{4}}{1-\frac{3}{4}x\left(-1\right)}=\frac{x-\left(-\frac{3}{4}\right)}{1-\frac{3}{4}x}
Add -\frac{3}{4} and 1 to get \frac{1}{4}.
\frac{\frac{1}{4}}{1+\frac{3}{4}x}=\frac{x-\left(-\frac{3}{4}\right)}{1-\frac{3}{4}x}
Multiply -\frac{3}{4} and -1 to get \frac{3}{4}.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{x-\left(-\frac{3}{4}\right)}{1-\frac{3}{4}x}
Express \frac{\frac{1}{4}}{1+\frac{3}{4}x} as a single fraction.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{x+\frac{3}{4}}{1-\frac{3}{4}x}
The opposite of -\frac{3}{4} is \frac{3}{4}.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{\frac{1}{4}\left(4x+3\right)}{\frac{1}{4}\left(-3x+4\right)}
Factor the expressions that are not already factored in \frac{x+\frac{3}{4}}{1-\frac{3}{4}x}.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{4x+3}{\left(\frac{1}{4}\right)^{0}\left(-3x+4\right)}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{4x+3}{1\left(-3x+4\right)}
Calculate \frac{1}{4} to the power of 0 and get 1.
\frac{1}{4+3x}=\frac{4x+3}{1\left(-3x+4\right)}
Use the distributive property to multiply 4 by 1+\frac{3}{4}x.
\frac{1}{4+3x}=\frac{4x+3}{-3x+4}
Use the distributive property to multiply 1 by -3x+4.
\frac{1}{4+3x}-\frac{4x+3}{-3x+4}=0
Subtract \frac{4x+3}{-3x+4} from both sides.
\frac{-3x+4}{\left(-3x+4\right)\left(3x+4\right)}-\frac{\left(4x+3\right)\left(3x+4\right)}{\left(-3x+4\right)\left(3x+4\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4+3x and -3x+4 is \left(-3x+4\right)\left(3x+4\right). Multiply \frac{1}{4+3x} times \frac{-3x+4}{-3x+4}. Multiply \frac{4x+3}{-3x+4} times \frac{3x+4}{3x+4}.
\frac{-3x+4-\left(4x+3\right)\left(3x+4\right)}{\left(-3x+4\right)\left(3x+4\right)}=0
Since \frac{-3x+4}{\left(-3x+4\right)\left(3x+4\right)} and \frac{\left(4x+3\right)\left(3x+4\right)}{\left(-3x+4\right)\left(3x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x+4-12x^{2}-16x-9x-12}{\left(-3x+4\right)\left(3x+4\right)}=0
Do the multiplications in -3x+4-\left(4x+3\right)\left(3x+4\right).
\frac{-28x-8-12x^{2}}{\left(-3x+4\right)\left(3x+4\right)}=0
Combine like terms in -3x+4-12x^{2}-16x-9x-12.
-28x-8-12x^{2}=0
Variable x cannot be equal to any of the values -\frac{4}{3},\frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by \left(-3x-4\right)\left(3x-4\right).
-7x-2-3x^{2}=0
Divide both sides by 4.
-3x^{2}-7x-2=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-7 ab=-3\left(-2\right)=6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
-1,-6 -2,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 6.
-1-6=-7 -2-3=-5
Calculate the sum for each pair.
a=-1 b=-6
The solution is the pair that gives sum -7.
\left(-3x^{2}-x\right)+\left(-6x-2\right)
Rewrite -3x^{2}-7x-2 as \left(-3x^{2}-x\right)+\left(-6x-2\right).
-x\left(3x+1\right)-2\left(3x+1\right)
Factor out -x in the first and -2 in the second group.
\left(3x+1\right)\left(-x-2\right)
Factor out common term 3x+1 by using distributive property.
x=-\frac{1}{3} x=-2
To find equation solutions, solve 3x+1=0 and -x-2=0.
\frac{-\frac{3}{4}+1}{1-\frac{3}{4}x\left(-1\right)}=\frac{x-\left(-\frac{3}{4}\right)}{1-\frac{3}{4}x}
The opposite of -1 is 1.
\frac{\frac{1}{4}}{1-\frac{3}{4}x\left(-1\right)}=\frac{x-\left(-\frac{3}{4}\right)}{1-\frac{3}{4}x}
Add -\frac{3}{4} and 1 to get \frac{1}{4}.
\frac{\frac{1}{4}}{1+\frac{3}{4}x}=\frac{x-\left(-\frac{3}{4}\right)}{1-\frac{3}{4}x}
Multiply -\frac{3}{4} and -1 to get \frac{3}{4}.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{x-\left(-\frac{3}{4}\right)}{1-\frac{3}{4}x}
Express \frac{\frac{1}{4}}{1+\frac{3}{4}x} as a single fraction.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{x+\frac{3}{4}}{1-\frac{3}{4}x}
The opposite of -\frac{3}{4} is \frac{3}{4}.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{\frac{1}{4}\left(4x+3\right)}{\frac{1}{4}\left(-3x+4\right)}
Factor the expressions that are not already factored in \frac{x+\frac{3}{4}}{1-\frac{3}{4}x}.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{4x+3}{\left(\frac{1}{4}\right)^{0}\left(-3x+4\right)}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{4x+3}{1\left(-3x+4\right)}
Calculate \frac{1}{4} to the power of 0 and get 1.
\frac{1}{4+3x}=\frac{4x+3}{1\left(-3x+4\right)}
Use the distributive property to multiply 4 by 1+\frac{3}{4}x.
\frac{1}{4+3x}=\frac{4x+3}{-3x+4}
Use the distributive property to multiply 1 by -3x+4.
\frac{1}{4+3x}-\frac{4x+3}{-3x+4}=0
Subtract \frac{4x+3}{-3x+4} from both sides.
\frac{-3x+4}{\left(-3x+4\right)\left(3x+4\right)}-\frac{\left(4x+3\right)\left(3x+4\right)}{\left(-3x+4\right)\left(3x+4\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4+3x and -3x+4 is \left(-3x+4\right)\left(3x+4\right). Multiply \frac{1}{4+3x} times \frac{-3x+4}{-3x+4}. Multiply \frac{4x+3}{-3x+4} times \frac{3x+4}{3x+4}.
\frac{-3x+4-\left(4x+3\right)\left(3x+4\right)}{\left(-3x+4\right)\left(3x+4\right)}=0
Since \frac{-3x+4}{\left(-3x+4\right)\left(3x+4\right)} and \frac{\left(4x+3\right)\left(3x+4\right)}{\left(-3x+4\right)\left(3x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x+4-12x^{2}-16x-9x-12}{\left(-3x+4\right)\left(3x+4\right)}=0
Do the multiplications in -3x+4-\left(4x+3\right)\left(3x+4\right).
\frac{-28x-8-12x^{2}}{\left(-3x+4\right)\left(3x+4\right)}=0
Combine like terms in -3x+4-12x^{2}-16x-9x-12.
-28x-8-12x^{2}=0
Variable x cannot be equal to any of the values -\frac{4}{3},\frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by \left(-3x-4\right)\left(3x-4\right).
-12x^{2}-28x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\left(-12\right)\left(-8\right)}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, -28 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\left(-12\right)\left(-8\right)}}{2\left(-12\right)}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784+48\left(-8\right)}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-\left(-28\right)±\sqrt{784-384}}{2\left(-12\right)}
Multiply 48 times -8.
x=\frac{-\left(-28\right)±\sqrt{400}}{2\left(-12\right)}
Add 784 to -384.
x=\frac{-\left(-28\right)±20}{2\left(-12\right)}
Take the square root of 400.
x=\frac{28±20}{2\left(-12\right)}
The opposite of -28 is 28.
x=\frac{28±20}{-24}
Multiply 2 times -12.
x=\frac{48}{-24}
Now solve the equation x=\frac{28±20}{-24} when ± is plus. Add 28 to 20.
x=-2
Divide 48 by -24.
x=\frac{8}{-24}
Now solve the equation x=\frac{28±20}{-24} when ± is minus. Subtract 20 from 28.
x=-\frac{1}{3}
Reduce the fraction \frac{8}{-24} to lowest terms by extracting and canceling out 8.
x=-2 x=-\frac{1}{3}
The equation is now solved.
\frac{-\frac{3}{4}+1}{1-\frac{3}{4}x\left(-1\right)}=\frac{x-\left(-\frac{3}{4}\right)}{1-\frac{3}{4}x}
The opposite of -1 is 1.
\frac{\frac{1}{4}}{1-\frac{3}{4}x\left(-1\right)}=\frac{x-\left(-\frac{3}{4}\right)}{1-\frac{3}{4}x}
Add -\frac{3}{4} and 1 to get \frac{1}{4}.
\frac{\frac{1}{4}}{1+\frac{3}{4}x}=\frac{x-\left(-\frac{3}{4}\right)}{1-\frac{3}{4}x}
Multiply -\frac{3}{4} and -1 to get \frac{3}{4}.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{x-\left(-\frac{3}{4}\right)}{1-\frac{3}{4}x}
Express \frac{\frac{1}{4}}{1+\frac{3}{4}x} as a single fraction.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{x+\frac{3}{4}}{1-\frac{3}{4}x}
The opposite of -\frac{3}{4} is \frac{3}{4}.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{\frac{1}{4}\left(4x+3\right)}{\frac{1}{4}\left(-3x+4\right)}
Factor the expressions that are not already factored in \frac{x+\frac{3}{4}}{1-\frac{3}{4}x}.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{4x+3}{\left(\frac{1}{4}\right)^{0}\left(-3x+4\right)}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{4\left(1+\frac{3}{4}x\right)}=\frac{4x+3}{1\left(-3x+4\right)}
Calculate \frac{1}{4} to the power of 0 and get 1.
\frac{1}{4+3x}=\frac{4x+3}{1\left(-3x+4\right)}
Use the distributive property to multiply 4 by 1+\frac{3}{4}x.
\frac{1}{4+3x}=\frac{4x+3}{-3x+4}
Use the distributive property to multiply 1 by -3x+4.
\frac{1}{4+3x}-\frac{4x+3}{-3x+4}=0
Subtract \frac{4x+3}{-3x+4} from both sides.
\frac{-3x+4}{\left(-3x+4\right)\left(3x+4\right)}-\frac{\left(4x+3\right)\left(3x+4\right)}{\left(-3x+4\right)\left(3x+4\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4+3x and -3x+4 is \left(-3x+4\right)\left(3x+4\right). Multiply \frac{1}{4+3x} times \frac{-3x+4}{-3x+4}. Multiply \frac{4x+3}{-3x+4} times \frac{3x+4}{3x+4}.
\frac{-3x+4-\left(4x+3\right)\left(3x+4\right)}{\left(-3x+4\right)\left(3x+4\right)}=0
Since \frac{-3x+4}{\left(-3x+4\right)\left(3x+4\right)} and \frac{\left(4x+3\right)\left(3x+4\right)}{\left(-3x+4\right)\left(3x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x+4-12x^{2}-16x-9x-12}{\left(-3x+4\right)\left(3x+4\right)}=0
Do the multiplications in -3x+4-\left(4x+3\right)\left(3x+4\right).
\frac{-28x-8-12x^{2}}{\left(-3x+4\right)\left(3x+4\right)}=0
Combine like terms in -3x+4-12x^{2}-16x-9x-12.
-28x-8-12x^{2}=0
Variable x cannot be equal to any of the values -\frac{4}{3},\frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by \left(-3x-4\right)\left(3x-4\right).
-28x-12x^{2}=8
Add 8 to both sides. Anything plus zero gives itself.
-12x^{2}-28x=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-12x^{2}-28x}{-12}=\frac{8}{-12}
Divide both sides by -12.
x^{2}+\left(-\frac{28}{-12}\right)x=\frac{8}{-12}
Dividing by -12 undoes the multiplication by -12.
x^{2}+\frac{7}{3}x=\frac{8}{-12}
Reduce the fraction \frac{-28}{-12} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{7}{3}x=-\frac{2}{3}
Reduce the fraction \frac{8}{-12} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=-\frac{2}{3}+\left(\frac{7}{6}\right)^{2}
Divide \frac{7}{3}, the coefficient of the x term, by 2 to get \frac{7}{6}. Then add the square of \frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{3}x+\frac{49}{36}=-\frac{2}{3}+\frac{49}{36}
Square \frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{25}{36}
Add -\frac{2}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{6}\right)^{2}=\frac{25}{36}
Factor x^{2}+\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Take the square root of both sides of the equation.
x+\frac{7}{6}=\frac{5}{6} x+\frac{7}{6}=-\frac{5}{6}
Simplify.
x=-\frac{1}{3} x=-2
Subtract \frac{7}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}