Evaluate
-\frac{2}{3}\approx -0.666666667
Factor
-\frac{2}{3} = -0.6666666666666666
Share
Copied to clipboard
\frac{-\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{3}}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{-\frac{2\sqrt{3}}{3}}{\sqrt{3}}
The square of \sqrt{3} is 3.
\frac{\left(-\frac{2\sqrt{3}}{3}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{-\frac{2\sqrt{3}}{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(-\frac{2\sqrt{3}}{3}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\frac{-2\sqrt{3}\sqrt{3}}{3}}{3}
Express \left(-\frac{2\sqrt{3}}{3}\right)\sqrt{3} as a single fraction.
\frac{-2\sqrt{3}\sqrt{3}}{3\times 3}
Express \frac{\frac{-2\sqrt{3}\sqrt{3}}{3}}{3} as a single fraction.
\frac{2\sqrt{3}\sqrt{3}}{-3\times 3}
Cancel out -1 in both numerator and denominator.
\frac{2\times 3}{-3\times 3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{6}{-3\times 3}
Multiply 2 and 3 to get 6.
\frac{6}{-9}
Multiply -3 and 3 to get -9.
-\frac{2}{3}
Reduce the fraction \frac{6}{-9} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}