Evaluate
\frac{3}{5}i=0.6i
Real Part
0
Share
Copied to clipboard
\frac{\left(-\frac{12}{5}+3i\right)\left(5-4i\right)}{\left(5+4i\right)\left(5-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5-4i.
\frac{\left(-\frac{12}{5}+3i\right)\left(5-4i\right)}{5^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-\frac{12}{5}+3i\right)\left(5-4i\right)}{41}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-\frac{12}{5}\times 5-\frac{12}{5}\times \left(-4i\right)+3i\times 5+3\left(-4\right)i^{2}}{41}
Multiply complex numbers -\frac{12}{5}+3i and 5-4i like you multiply binomials.
\frac{-\frac{12}{5}\times 5-\frac{12}{5}\times \left(-4i\right)+3i\times 5+3\left(-4\right)\left(-1\right)}{41}
By definition, i^{2} is -1.
\frac{-12+\frac{48}{5}i+15i+12}{41}
Do the multiplications in -\frac{12}{5}\times 5-\frac{12}{5}\times \left(-4i\right)+3i\times 5+3\left(-4\right)\left(-1\right).
\frac{-12+12+\left(\frac{48}{5}+15\right)i}{41}
Combine the real and imaginary parts in -12+\frac{48}{5}i+15i+12.
\frac{\frac{123}{5}i}{41}
Do the additions in -12+12+\left(\frac{48}{5}+15\right)i.
\frac{3}{5}i
Divide \frac{123}{5}i by 41 to get \frac{3}{5}i.
Re(\frac{\left(-\frac{12}{5}+3i\right)\left(5-4i\right)}{\left(5+4i\right)\left(5-4i\right)})
Multiply both numerator and denominator of \frac{-\frac{12}{5}+3i}{5+4i} by the complex conjugate of the denominator, 5-4i.
Re(\frac{\left(-\frac{12}{5}+3i\right)\left(5-4i\right)}{5^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-\frac{12}{5}+3i\right)\left(5-4i\right)}{41})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-\frac{12}{5}\times 5-\frac{12}{5}\times \left(-4i\right)+3i\times 5+3\left(-4\right)i^{2}}{41})
Multiply complex numbers -\frac{12}{5}+3i and 5-4i like you multiply binomials.
Re(\frac{-\frac{12}{5}\times 5-\frac{12}{5}\times \left(-4i\right)+3i\times 5+3\left(-4\right)\left(-1\right)}{41})
By definition, i^{2} is -1.
Re(\frac{-12+\frac{48}{5}i+15i+12}{41})
Do the multiplications in -\frac{12}{5}\times 5-\frac{12}{5}\times \left(-4i\right)+3i\times 5+3\left(-4\right)\left(-1\right).
Re(\frac{-12+12+\left(\frac{48}{5}+15\right)i}{41})
Combine the real and imaginary parts in -12+\frac{48}{5}i+15i+12.
Re(\frac{\frac{123}{5}i}{41})
Do the additions in -12+12+\left(\frac{48}{5}+15\right)i.
Re(\frac{3}{5}i)
Divide \frac{123}{5}i by 41 to get \frac{3}{5}i.
0
The real part of \frac{3}{5}i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}