Evaluate
-\frac{1}{220}\approx -0.004545455
Factor
-\frac{1}{220} = -0.004545454545454545
Share
Copied to clipboard
\frac{-\frac{1}{6}+\frac{1}{1+\frac{1}{4}}-\frac{7}{12}}{\left(4-\frac{5}{\frac{2}{7}-1}\right)\left(-1\right)}
The opposite of -\frac{1}{4} is \frac{1}{4}.
\frac{-\frac{1}{6}+\frac{1}{\frac{4}{4}+\frac{1}{4}}-\frac{7}{12}}{\left(4-\frac{5}{\frac{2}{7}-1}\right)\left(-1\right)}
Convert 1 to fraction \frac{4}{4}.
\frac{-\frac{1}{6}+\frac{1}{\frac{4+1}{4}}-\frac{7}{12}}{\left(4-\frac{5}{\frac{2}{7}-1}\right)\left(-1\right)}
Since \frac{4}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{-\frac{1}{6}+\frac{1}{\frac{5}{4}}-\frac{7}{12}}{\left(4-\frac{5}{\frac{2}{7}-1}\right)\left(-1\right)}
Add 4 and 1 to get 5.
\frac{-\frac{1}{6}+1\times \frac{4}{5}-\frac{7}{12}}{\left(4-\frac{5}{\frac{2}{7}-1}\right)\left(-1\right)}
Divide 1 by \frac{5}{4} by multiplying 1 by the reciprocal of \frac{5}{4}.
\frac{-\frac{1}{6}+\frac{4}{5}-\frac{7}{12}}{\left(4-\frac{5}{\frac{2}{7}-1}\right)\left(-1\right)}
Multiply 1 and \frac{4}{5} to get \frac{4}{5}.
\frac{-\frac{5}{30}+\frac{24}{30}-\frac{7}{12}}{\left(4-\frac{5}{\frac{2}{7}-1}\right)\left(-1\right)}
Least common multiple of 6 and 5 is 30. Convert -\frac{1}{6} and \frac{4}{5} to fractions with denominator 30.
\frac{\frac{-5+24}{30}-\frac{7}{12}}{\left(4-\frac{5}{\frac{2}{7}-1}\right)\left(-1\right)}
Since -\frac{5}{30} and \frac{24}{30} have the same denominator, add them by adding their numerators.
\frac{\frac{19}{30}-\frac{7}{12}}{\left(4-\frac{5}{\frac{2}{7}-1}\right)\left(-1\right)}
Add -5 and 24 to get 19.
\frac{\frac{38}{60}-\frac{35}{60}}{\left(4-\frac{5}{\frac{2}{7}-1}\right)\left(-1\right)}
Least common multiple of 30 and 12 is 60. Convert \frac{19}{30} and \frac{7}{12} to fractions with denominator 60.
\frac{\frac{38-35}{60}}{\left(4-\frac{5}{\frac{2}{7}-1}\right)\left(-1\right)}
Since \frac{38}{60} and \frac{35}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3}{60}}{\left(4-\frac{5}{\frac{2}{7}-1}\right)\left(-1\right)}
Subtract 35 from 38 to get 3.
\frac{\frac{1}{20}}{\left(4-\frac{5}{\frac{2}{7}-1}\right)\left(-1\right)}
Reduce the fraction \frac{3}{60} to lowest terms by extracting and canceling out 3.
\frac{\frac{1}{20}}{\left(4-\frac{5}{\frac{2}{7}-\frac{7}{7}}\right)\left(-1\right)}
Convert 1 to fraction \frac{7}{7}.
\frac{\frac{1}{20}}{\left(4-\frac{5}{\frac{2-7}{7}}\right)\left(-1\right)}
Since \frac{2}{7} and \frac{7}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{20}}{\left(4-\frac{5}{-\frac{5}{7}}\right)\left(-1\right)}
Subtract 7 from 2 to get -5.
\frac{\frac{1}{20}}{\left(4-5\left(-\frac{7}{5}\right)\right)\left(-1\right)}
Divide 5 by -\frac{5}{7} by multiplying 5 by the reciprocal of -\frac{5}{7}.
\frac{\frac{1}{20}}{\left(4-\left(-7\right)\right)\left(-1\right)}
Cancel out 5 and 5.
\frac{\frac{1}{20}}{\left(4+7\right)\left(-1\right)}
The opposite of -7 is 7.
\frac{\frac{1}{20}}{11\left(-1\right)}
Add 4 and 7 to get 11.
\frac{\frac{1}{20}}{-11}
Multiply 11 and -1 to get -11.
\frac{1}{20\left(-11\right)}
Express \frac{\frac{1}{20}}{-11} as a single fraction.
\frac{1}{-220}
Multiply 20 and -11 to get -220.
-\frac{1}{220}
Fraction \frac{1}{-220} can be rewritten as -\frac{1}{220} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}