Evaluate
\frac{\left(x-6\right)\left(x-2\right)}{16}
Expand
\frac{x^{2}}{16}-\frac{x}{2}+\frac{3}{4}
Graph
Share
Copied to clipboard
\frac{\frac{1}{4}\left(x-2\right)\left(-x+2\right)}{x-2}\times \frac{-\frac{1}{4}x^{2}+x+3}{x+2}
Factor the expressions that are not already factored in \frac{-\frac{1}{4}x^{2}+x-1}{x-2}.
\frac{-\frac{1}{4}\left(x-2\right)\left(x-2\right)}{x-2}\times \frac{-\frac{1}{4}x^{2}+x+3}{x+2}
Extract the negative sign in 2-x.
-\frac{1}{4}\left(x-2\right)\times \frac{-\frac{1}{4}x^{2}+x+3}{x+2}
Cancel out x-2 in both numerator and denominator.
\left(-\frac{1}{4}x+\frac{1}{2}\right)\times \frac{-\frac{1}{4}x^{2}+x+3}{x+2}
Expand the expression.
\left(-\frac{1}{4}x+\frac{1}{2}\right)\times \frac{\frac{1}{4}\left(x-6\right)\left(-x-2\right)}{x+2}
Factor the expressions that are not already factored in \frac{-\frac{1}{4}x^{2}+x+3}{x+2}.
\left(-\frac{1}{4}x+\frac{1}{2}\right)\times \frac{-\frac{1}{4}\left(x-6\right)\left(x+2\right)}{x+2}
Extract the negative sign in -2-x.
\left(-\frac{1}{4}x+\frac{1}{2}\right)\left(-1\right)\times \frac{1}{4}\left(x-6\right)
Cancel out x+2 in both numerator and denominator.
\left(-\frac{1}{4}x+\frac{1}{2}\right)\left(-\frac{1}{4}x+\frac{3}{2}\right)
Expand the expression.
\frac{1}{16}x^{2}-\frac{1}{2}x+\frac{3}{4}
Use the distributive property to multiply -\frac{1}{4}x+\frac{1}{2} by -\frac{1}{4}x+\frac{3}{2} and combine like terms.
\frac{\frac{1}{4}\left(x-2\right)\left(-x+2\right)}{x-2}\times \frac{-\frac{1}{4}x^{2}+x+3}{x+2}
Factor the expressions that are not already factored in \frac{-\frac{1}{4}x^{2}+x-1}{x-2}.
\frac{-\frac{1}{4}\left(x-2\right)\left(x-2\right)}{x-2}\times \frac{-\frac{1}{4}x^{2}+x+3}{x+2}
Extract the negative sign in 2-x.
-\frac{1}{4}\left(x-2\right)\times \frac{-\frac{1}{4}x^{2}+x+3}{x+2}
Cancel out x-2 in both numerator and denominator.
\left(-\frac{1}{4}x+\frac{1}{2}\right)\times \frac{-\frac{1}{4}x^{2}+x+3}{x+2}
Expand the expression.
\left(-\frac{1}{4}x+\frac{1}{2}\right)\times \frac{\frac{1}{4}\left(x-6\right)\left(-x-2\right)}{x+2}
Factor the expressions that are not already factored in \frac{-\frac{1}{4}x^{2}+x+3}{x+2}.
\left(-\frac{1}{4}x+\frac{1}{2}\right)\times \frac{-\frac{1}{4}\left(x-6\right)\left(x+2\right)}{x+2}
Extract the negative sign in -2-x.
\left(-\frac{1}{4}x+\frac{1}{2}\right)\left(-1\right)\times \frac{1}{4}\left(x-6\right)
Cancel out x+2 in both numerator and denominator.
\left(-\frac{1}{4}x+\frac{1}{2}\right)\left(-\frac{1}{4}x+\frac{3}{2}\right)
Expand the expression.
\frac{1}{16}x^{2}-\frac{1}{2}x+\frac{3}{4}
Use the distributive property to multiply -\frac{1}{4}x+\frac{1}{2} by -\frac{1}{4}x+\frac{3}{2} and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}