Solve for x
x=-4
Graph
Share
Copied to clipboard
2\left(-\frac{1}{2}x^{2}-\frac{3}{2}x\right)=x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of x,2.
-x^{2}-3x=x
Use the distributive property to multiply 2 by -\frac{1}{2}x^{2}-\frac{3}{2}x.
-x^{2}-3x-x=0
Subtract x from both sides.
-x^{2}-4x=0
Combine -3x and -x to get -4x.
x\left(-x-4\right)=0
Factor out x.
x=0 x=-4
To find equation solutions, solve x=0 and -x-4=0.
x=-4
Variable x cannot be equal to 0.
2\left(-\frac{1}{2}x^{2}-\frac{3}{2}x\right)=x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of x,2.
-x^{2}-3x=x
Use the distributive property to multiply 2 by -\frac{1}{2}x^{2}-\frac{3}{2}x.
-x^{2}-3x-x=0
Subtract x from both sides.
-x^{2}-4x=0
Combine -3x and -x to get -4x.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±4}{2\left(-1\right)}
Take the square root of \left(-4\right)^{2}.
x=\frac{4±4}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±4}{-2}
Multiply 2 times -1.
x=\frac{8}{-2}
Now solve the equation x=\frac{4±4}{-2} when ± is plus. Add 4 to 4.
x=-4
Divide 8 by -2.
x=\frac{0}{-2}
Now solve the equation x=\frac{4±4}{-2} when ± is minus. Subtract 4 from 4.
x=0
Divide 0 by -2.
x=-4 x=0
The equation is now solved.
x=-4
Variable x cannot be equal to 0.
2\left(-\frac{1}{2}x^{2}-\frac{3}{2}x\right)=x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of x,2.
-x^{2}-3x=x
Use the distributive property to multiply 2 by -\frac{1}{2}x^{2}-\frac{3}{2}x.
-x^{2}-3x-x=0
Subtract x from both sides.
-x^{2}-4x=0
Combine -3x and -x to get -4x.
\frac{-x^{2}-4x}{-1}=\frac{0}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{4}{-1}\right)x=\frac{0}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+4x=\frac{0}{-1}
Divide -4 by -1.
x^{2}+4x=0
Divide 0 by -1.
x^{2}+4x+2^{2}=2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=4
Square 2.
\left(x+2\right)^{2}=4
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+2=2 x+2=-2
Simplify.
x=0 x=-4
Subtract 2 from both sides of the equation.
x=-4
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}