Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\sqrt{1+\left(\frac{1}{2}\right)^{2}}}
Since -\frac{a^{2}}{2} and \frac{3a}{2} have the same denominator, add them by adding their numerators.
\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\sqrt{1+\frac{1}{4}}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\sqrt{\frac{5}{4}}}
Add 1 and \frac{1}{4} to get \frac{5}{4}.
\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\frac{\sqrt{5}}{\sqrt{4}}}
Rewrite the square root of the division \sqrt{\frac{5}{4}} as the division of square roots \frac{\sqrt{5}}{\sqrt{4}}.
\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\frac{\sqrt{5}}{2}}
Calculate the square root of 4 and get 2.
\frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2}{\sqrt{5}}
Divide -\frac{1}{2}a+\frac{-a^{2}+3a}{2} by \frac{\sqrt{5}}{2} by multiplying -\frac{1}{2}a+\frac{-a^{2}+3a}{2} by the reciprocal of \frac{\sqrt{5}}{2}.
\frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{\left(-a+2\times \frac{-a^{2}+3a}{2}\right)\sqrt{5}}{5}
Use the distributive property to multiply -\frac{1}{2}a+\frac{-a^{2}+3a}{2} by 2.
\frac{\left(-a-a^{2}+3a\right)\sqrt{5}}{5}
Cancel out 2 and 2.
\frac{\left(2a-a^{2}\right)\sqrt{5}}{5}
Combine -a and 3a to get 2a.
\frac{2a\sqrt{5}-a^{2}\sqrt{5}}{5}
Use the distributive property to multiply 2a-a^{2} by \sqrt{5}.
factor(\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\sqrt{1+\left(\frac{1}{2}\right)^{2}}})
Since -\frac{a^{2}}{2} and \frac{3a}{2} have the same denominator, add them by adding their numerators.
factor(\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\sqrt{1+\frac{1}{4}}})
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
factor(\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\sqrt{\frac{5}{4}}})
Add 1 and \frac{1}{4} to get \frac{5}{4}.
factor(\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\frac{\sqrt{5}}{\sqrt{4}}})
Rewrite the square root of the division \sqrt{\frac{5}{4}} as the division of square roots \frac{\sqrt{5}}{\sqrt{4}}.
factor(\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\frac{\sqrt{5}}{2}})
Calculate the square root of 4 and get 2.
factor(\frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2}{\sqrt{5}})
Divide -\frac{1}{2}a+\frac{-a^{2}+3a}{2} by \frac{\sqrt{5}}{2} by multiplying -\frac{1}{2}a+\frac{-a^{2}+3a}{2} by the reciprocal of \frac{\sqrt{5}}{2}.
factor(\frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2\sqrt{5}}{\left(\sqrt{5}\right)^{2}})
Rationalize the denominator of \frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
factor(\frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2\sqrt{5}}{5})
The square of \sqrt{5} is 5.
factor(\frac{\left(-a+2\times \frac{-a^{2}+3a}{2}\right)\sqrt{5}}{5})
Use the distributive property to multiply -\frac{1}{2}a+\frac{-a^{2}+3a}{2} by 2.
factor(\frac{\left(-a-a^{2}+3a\right)\sqrt{5}}{5})
Cancel out 2 and 2.
factor(\frac{\left(2a-a^{2}\right)\sqrt{5}}{5})
Combine -a and 3a to get 2a.
factor(\frac{2a\sqrt{5}-a^{2}\sqrt{5}}{5})
Use the distributive property to multiply 2a-a^{2} by \sqrt{5}.
a\sqrt{5}\left(2-a\right)
Consider 2a\sqrt{5}-a^{2}\sqrt{5}. Factor out a\sqrt{5}.
\frac{a\left(-a+2\right)\sqrt{5}}{5}
Rewrite the complete factored expression.