Evaluate
\frac{\sqrt{5}a\left(2-a\right)}{5}
Factor
\frac{\sqrt{5}a\left(2-a\right)}{5}
Share
Copied to clipboard
\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\sqrt{1+\left(\frac{1}{2}\right)^{2}}}
Since -\frac{a^{2}}{2} and \frac{3a}{2} have the same denominator, add them by adding their numerators.
\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\sqrt{1+\frac{1}{4}}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\sqrt{\frac{5}{4}}}
Add 1 and \frac{1}{4} to get \frac{5}{4}.
\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\frac{\sqrt{5}}{\sqrt{4}}}
Rewrite the square root of the division \sqrt{\frac{5}{4}} as the division of square roots \frac{\sqrt{5}}{\sqrt{4}}.
\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\frac{\sqrt{5}}{2}}
Calculate the square root of 4 and get 2.
\frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2}{\sqrt{5}}
Divide -\frac{1}{2}a+\frac{-a^{2}+3a}{2} by \frac{\sqrt{5}}{2} by multiplying -\frac{1}{2}a+\frac{-a^{2}+3a}{2} by the reciprocal of \frac{\sqrt{5}}{2}.
\frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{\left(-a+2\times \frac{-a^{2}+3a}{2}\right)\sqrt{5}}{5}
Use the distributive property to multiply -\frac{1}{2}a+\frac{-a^{2}+3a}{2} by 2.
\frac{\left(-a-a^{2}+3a\right)\sqrt{5}}{5}
Cancel out 2 and 2.
\frac{\left(2a-a^{2}\right)\sqrt{5}}{5}
Combine -a and 3a to get 2a.
\frac{2a\sqrt{5}-a^{2}\sqrt{5}}{5}
Use the distributive property to multiply 2a-a^{2} by \sqrt{5}.
factor(\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\sqrt{1+\left(\frac{1}{2}\right)^{2}}})
Since -\frac{a^{2}}{2} and \frac{3a}{2} have the same denominator, add them by adding their numerators.
factor(\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\sqrt{1+\frac{1}{4}}})
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
factor(\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\sqrt{\frac{5}{4}}})
Add 1 and \frac{1}{4} to get \frac{5}{4}.
factor(\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\frac{\sqrt{5}}{\sqrt{4}}})
Rewrite the square root of the division \sqrt{\frac{5}{4}} as the division of square roots \frac{\sqrt{5}}{\sqrt{4}}.
factor(\frac{-\frac{1}{2}a+\frac{-a^{2}+3a}{2}}{\frac{\sqrt{5}}{2}})
Calculate the square root of 4 and get 2.
factor(\frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2}{\sqrt{5}})
Divide -\frac{1}{2}a+\frac{-a^{2}+3a}{2} by \frac{\sqrt{5}}{2} by multiplying -\frac{1}{2}a+\frac{-a^{2}+3a}{2} by the reciprocal of \frac{\sqrt{5}}{2}.
factor(\frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2\sqrt{5}}{\left(\sqrt{5}\right)^{2}})
Rationalize the denominator of \frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
factor(\frac{\left(-\frac{1}{2}a+\frac{-a^{2}+3a}{2}\right)\times 2\sqrt{5}}{5})
The square of \sqrt{5} is 5.
factor(\frac{\left(-a+2\times \frac{-a^{2}+3a}{2}\right)\sqrt{5}}{5})
Use the distributive property to multiply -\frac{1}{2}a+\frac{-a^{2}+3a}{2} by 2.
factor(\frac{\left(-a-a^{2}+3a\right)\sqrt{5}}{5})
Cancel out 2 and 2.
factor(\frac{\left(2a-a^{2}\right)\sqrt{5}}{5})
Combine -a and 3a to get 2a.
factor(\frac{2a\sqrt{5}-a^{2}\sqrt{5}}{5})
Use the distributive property to multiply 2a-a^{2} by \sqrt{5}.
a\sqrt{5}\left(2-a\right)
Consider 2a\sqrt{5}-a^{2}\sqrt{5}. Factor out a\sqrt{5}.
\frac{a\left(-a+2\right)\sqrt{5}}{5}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}